CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9702	41

Section A

1	ir	force is proportional to the product of the masses and inversely proportional to the square of the separation either point masses or separation >> size of masses		[2]
	(b) (i	gravitational force provides the centripetal force $mv^2/r = GMm/r^2$ and $E_K = \frac{1}{2}mv^2$ hence $E_K = GMm/2r$	B1 M1 A0	[2]
	(ii	i) 1. $\Delta E_{K} = \frac{1}{2} \times 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^{6}\}^{-1} - \{7.34 \times 10^{6}\}^{-1})$ = 9.26 × 10 ⁷ J (ignore any sign in answer) (allow 1.0 × 10 ⁸ J if evidence that E_{K} evaluated separately for each r)	C1 A1	[2]
		2. $\Delta E_P = 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^6\}^{-1} - \{7.34 \times 10^6\}^{-1})$ = 1.85 × 10 ⁸ J (ignore any sign in answer) (allow 1.8 or 1.9 × 10 ⁸ J)	C1 A1	[2]
	(iii	i) either $(7.30 \times 10^6)^{-1}$ – $(7.34 \times 10^6)^{-1}$ or $\Delta E_{\rm K}$ is positive / $E_{\rm K}$ increased speed has increased	M1 A1	[2]
2	(a) (i	sum of potential energy and kinetic energy of atoms/molecules/particles reference to random	M1 A1	[2]
	(ii	no intermolecular forces no potential energy internal energy is kinetic energy (of random motion) of molecules (reference to random motion here then allow back credit to (i) if M1 scored)	B1 B1 B1	[3]
	` e	inetic energy ∞ thermodynamic temperature ither temperature in Celsius, not kelvin so incorrect r temperature in kelvin is not doubled	B1 B1	[2]
3		emperature of the spheres is the same o (net) transfer of energy between the spheres	B1 B1	[2]
	(b) (i	i) power = $m \times c \times \Delta\theta$ where m is mass per second $3800 = m \times 4.2 \times (42 - 18)$ $m = 38 \mathrm{g s}^{-1}$	C1 C1 A1	[3]
	(ii	some thermal energy is lost to the surroundings so rate is an overestimate	M1 A1	[2]
4	s n	traight line through origin hows acceleration proportional to displacement egative gradient hows acceleration and displacement in opposite directions	M1 A1 M1 A1	[4]

(ii) either gradient = ω^2 and ω = $2\pi f$ or $a = -\omega^2 x$ and ω = $2\pi f$ gradient = $13.5/(2.8 \times 10^{-2}) = 482$ ω = $22 \operatorname{rad} s^{-1}$ C1 frequency = $(22/2\pi) = 3.5 \mathrm{Hz}$ A1 [3] (c) e.g. lower spring may not be extended e.g. upper spring may exceed limit of proportionality / elastic limit (any sensible suggestion) (a) (i) ratio of charge and potential (difference) / voltage (ratio must be clear) (ii) capacitor has equal magnitudes of (+) ve and (-) ve charge by total charge on capacitor is zero (so does not store charge) (+) ve and (-) ve charges to be separated work done to achieve this so stores energy (b) (i) capacitance of Y and Z together is $24 \mu\text{F}$ $1/C = 1/24 + 1/12$ $C = 8.0 \mu\text{F} (ellow 1 \text{s.f.})$ A1 [2] (iii) some discussion as to why all charge of one sign on one plate of X $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $C =$		ige c		labas	i upci	
(ii) either gradient = ω^2 and ω = $2\pi f$ or $a = -\omega^2 x$ and ω = $2\pi f$ gradient = $13.5/(2.8 \times 10^{-2}) = 482$ ω = $22 \operatorname{rad} s^{-1}$ C1 frequency = $(22/2\pi) = 3.5 \operatorname{Hz}$ C1 frequency = $(22/2\pi) = 3.5 \operatorname{Hz}$ C1 (c) e.g. lower spring may not be extended e.g. upper spring may exceed limit of proportionality/elastic limit (any sensible suggestion) (a) (i) ratio of charge and potential (difference)/voltage (ratio must be clear) (ii) capacitor has equal magnitudes of (+)ve and (-)ve charge by total charge on capacitor is zero (so does not store charge) (+)ve and (-)ve charges to be separated work done to achieve this so stores energy A1 (b) (i) capacitance of Y and Z together is $24 \mu\text{F}$ $1/C = 1/24 + 1/12$ $C = 8.0 \mu\text{F} (\operatorname{allow} 1 \operatorname{s.f.})$ (ii) some discussion as to why all charge of one sign on one plate of X $2 = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{8.0 \times 10^{-6} \times 9.0}$ $= 6.0 V (\operatorname{allow} 1 \operatorname{s.f.}) (\operatorname{allow} 72/12)$ A1 (iii) $1. V = (72 \times 10^{-6})/(12 \times 10^{-6})$ $= 6.0 V (\operatorname{allow} 1 \operatorname{s.f.}) (\operatorname{allow} 72/12)$ A2 (iii) $1. V = (72 \times 10^{-6})/(12 \times 10^{-6})$ $= 6.0 V (\operatorname{allow} 1 \operatorname{s.f.}) (\operatorname{allow} 72/12)$ A1 (ii) article must be moving with component of velocity normal to magnetic field A1 (iii) $F = Bqv \sin \theta$ $q, v \text{ and } \theta \text{ explained}$ A1 (iv) article must be BCGF and face ADHE (c) potential difference gives rise to an electric field either $F_E = qE (\text{no need to explain symbols})$			GCE AS/A LEVEL – October/November 2012 9	702	41	
gradient = $13.5/(2.8 \times 10^{-2}) = 482$ $\omega = 22 \operatorname{rad} \operatorname{s}^{-1}$ C1 frequency = $(22/2\pi =) 3.5 \operatorname{Hz}$ C1 frequency = $(22/2\pi =) 3.5 \operatorname{Hz}$ C2 (c) e.g. lower spring may not be extended e.g. upper spring may exceed limit of proportionality/elastic limit (any sensible suggestion) B1 [1] (a) (i) ratio of charge and potential (difference)/voltage (ratio must be clean) B1 [1] (ii) capacitor has equal magnitudes of (+)ve and (-)ve charge total charge on capacitor is zero (so does not store charge) B1 (+)ve and (-)ve charges to be separated Work done to achieve this so stores energy B1 (+)ve and (-)ve charges to be separated Work done to achieve this so stores energy B1 (+)ve and (-)ve charges to be separated Work done to achieve this so stores energy B1 (4) (b) (i) capacitance of Y and Z together is $24 \mu\text{F}$ $1/C = 1/24 + 1/12$ $C = 8.0 \mu\text{F} (allow 1 \text{ s.f.})$ A1 [2] (ii) some discussion as to why all charge of one sign on one plate of X $2 = (CV =) 8.0 \times 10^{-6} \times 9.0$ $2 = 72 \mu\text{C}$ A0 [2] (iii) $1 \cdot V = (72 \times 10^{-6})/(12 \times 10^{-6})$ $2 \cdot 6.0 V (allow 1 \text{ s.f.}) (allow 72/12)$ A1 [1] 2. either $Q = 12 \times 10^{-6} \times 3.0 \text{or}$ charge is shared between Y and Z charge = $36 \mu\text{C}$ Must have correct voltage in (iii) 1 if just quote of $36 \mu\text{C}$ in (iii) 2. (a) (i) particle must be moving with component of velocity normal to magnetic field (ii) $F = Bqv \sin \theta$ $q, v \text{ and } \theta \exp \text{ palained}$ (b) (i) face BCGF shaded (ii) between face BCGF and face ADHE (c) potential difference gives rise to an electric field either $F_E = qE (\text{ no need to explain symbols})$	(b)	(i)	2.8 cm		A1	[1]
frequency = (22/2π =) 3.5 Hz A1 [3] (c) e.g. lower spring may not be extended e.g. upper spring may exceed limit of proportionality/elastic limit (any sensible suggestion) (a) (i) ratio of charge and potential (difference)/voltage (ratio must be clear) (ii) capacitor has equal magnitudes of (+)ve and (-)ve charge B1 total charge on capacitor is zero (so does not store charge) (+)ve and (-)ve charges to be separated W1 M1 work done to achieve this so stores energy (b) (i) capacitance of Y and Z together is 24 μF 1/C = 1/24 + 1/12 C = 8.0 μF (allow 1 s.f.) (ii) some discussion as to why all charge of one sign on one plate of X Q = (CV =) 8.0 × 10 ⁻⁶ × 9.0 = 72 μC (iii) 1. V = (72 × 10 ⁻⁶)/(12 × 10 ⁻⁶) = 6.0 V (allow 1 s.f.) (allow 72/12) 2. either Q = 12 × 10 ⁻⁶ × 3.0 or charge is shared between Y and Z charge = 36 μC Must have correct voltage in (iii) 1 if just quote of 36 μC in (iii) 2. (a) (i) particle must be moving with component of velocity normal to magnetic field (ii) F = Bqv sin θ q, v and θ explained (b) (i) face BCGF shaded (ii) between face BCGF and face ADHE (c) potential difference gives rise to an electric field either F _E = qE (no need to explain symbols)		(ii)	gradient = $13.5/(2.8 \times 10^{-2}) = 482$			
(c) e.g. lower spring may not be extended e.g. upper spring may exceed limit of proportionality/elastic limit (any sensible suggestion) (a) (i) ratio of charge and potential (difference)/voltage (ratio must be clear) (ii) capacitor has equal magnitudes of (+)ve and (-)ve charge B1 total charge on capacitor is zero (so does not store charge) (+)ve and (-)ve charges to be separated W1 work done to achieve this so stores energy (b) (i) capacitance of Y and Z together is 24 μF 1/C = 1/24 + 1/12 C = 8.0 μF (allow 1 s.f.) (ii) some discussion as to why all charge of one sign on one plate of X Q = (CV =) 8.0 × 10 ⁻⁶ × 9.0 M1 = 72 μC (iii) 1. V = (72 × 10 ⁻⁶)/(12 × 10 ⁻⁶) = 6.0V (allow 1 s.f.) (allow 72/12) 2. either Q = 12 × 10 ⁻⁶ × 3.0 or charge is shared between Y and Z charge = 36 μC Must have correct voltage in (iii) 1 if just quote of 36 μC in (iii) 2. (a) (i) particle must be moving with component of velocity normal to magnetic field (ii) F = Bqv sin θ q, v and θ explained (b) (i) face BCGF shaded (ii) between face BCGF and face ADHE (c) potential difference gives rise to an electric field either F _E = qE (no need to explain symbols)						
e.g. <u>upper</u> spring may exceed limit of proportionality/elastic limit (any sensible suggestion) (a) (i) ratio of charge and potential (difference)/voltage (ratio must be clear) (ii) capacitor has equal magnitudes of (+)ve and (-)ve charge total charge on capacitor is zero (so does not store charge) (+)ve and (-)ve charges to be separated work done to achieve this so stores energy (b) (i) capacitance of Y and Z together is 24 μF 1/C = 1/24 + 1/12 C = 8.0 μF (allow 1 s.f.) (iii) some discussion as to why all charge of one sign on one plate of X Q = (CV =) 8.0 × 10 ⁻⁶ × 9.0 = 72 μC (iii) 1. V = (72 × 10 ⁻⁶)/(12 × 10 ⁻⁶) = 6.0 V (allow 1 s.f.) (allow 72/12) 2. either Q = 12 × 10 ⁻⁶ × 3.0 or charge is shared between Y and Z charge = 36 μC Must have correct voltage in (iii) 1 if just quote of 36 μC in (iii) 2. (a) (i) particle must be moving with component of velocity normal to magnetic field (ii) F = 8qv sin θ q, v and θ explained (b) (i) face BCGF shaded (ii) between face BCGF and face ADHE (c) potential difference gives rise to an electric field either F _E = qE (no need to explain symbols)			frequency = $(22/2\pi =) 3.5 Hz$		A1	[3]
(ratio must be clear) (ratio must be clear) (ii) capacitor has equal magnitudes of (+)ve and (-)ve charge botal charge on capacitor is zero (so does not store charge) (+) ve and (-)ve charges to be separated bound on the control of the contro	(c)	e.g	. upper spring may exceed limit of proportionality/elastic limit		B1	[1]
(ii) capacitor has equal magnitudes of (+)ve and (-)ve charge $\frac{\text{total}}{\text{total}}$ charge on capacitor is zero (so does not store charge) $\frac{\text{total}}{\text{(+)}}$ ve and (-)ve charges to be separated $\frac{\text{total}}{\text{(+)}}$ work done to achieve this so stores energy $\frac{\text{total}}{\text{(+)}}$ (b) (i) capacitance of Y and Z together is $24 \mu\text{F}$ $\frac{\text{C1}}{1/C} = 1/24 + 1/12$ $\frac{\text{C}}{C} = 8.0 \mu\text{F}$ ($\frac{\text{allow 1 s.f.}}{1/C}$) A1 [2] (ii) some discussion as to why all charge of one sign on one plate of X $\frac{\text{B1}}{Q} = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{1.0000000000000000000000000000000000$	(a)	(i)	• • • • • • •		B1	[1]
total charge on capacitor is zero (so does not store charge) (+)ve and (-)ve charges to be separated work done to achieve this so stores energy (b) (i) capacitance of Y and Z together is 24 μ F $1/C = 1/24 + 1/12$ $C = 8.0 \mu$ F (allow 1 s.f.) (ii) some discussion as to why all charge of one sign on one plate of X $Q = (CV =) \frac{8.0 \times 10^{-6}}{2} \times 9.0$ $Q = (CV =$						
(+)ve and (-)ve charges to be separated work done to achieve this so stores energy A1 [4] (b) (i) capacitance of Y and Z together is 24 μF $1/C = 1/24 + 1/12$ C = 8.0 μF (allow 1 s.f.) A1 [2] (ii) some discussion as to why all charge of one sign on one plate of X Q = (CV =) 8.0 × 10 ⁻⁶ × 9.0 M1 = 72 μC A0 [2] (iii) 1. $V = (72 \times 10^{-6})/(12 \times 10^{-6})$ = 6.0 V (allow 1 s.f.) (allow 72/12) A1 [1] 2. either Q = 12 × 10 ⁻⁶ × 3.0 or charge is shared between Y and Z charge = 36 μC Must have correct voltage in (iii) 1 if just quote of 36 μC in (iii) 2. (a) (i) particle must be moving with component of velocity normal to magnetic field A1 [2] (ii) $F = Bqv \sin \theta$ y and $\theta = BCGF$ shaded A1 [1] (b) (i) face BCGF shaded A1 [1] (c) potential difference gives rise to an electric field either $F_E = qE$ (no need to explain symbols)		(ii)				
work done to achieve this so stores energy A1 [4] (b) (i) capacitance of Y and Z together is $24 \mu F$ $1/C = 1/24 + 1/12$ $C = 8.0 \mu F (allow 1 \text{ s.f.})$ A1 [2] (ii) some discussion as to why all charge of one sign on one plate of X $Q = (CV =) \frac{8.0 \times 10^{-6} \times 9.0}{A0} = 72 \mu C$ (iii) 1. $V = (72 \times 10^{-6})/(12 \times 10^{-6})$ $= 6.0 \text{ V} (allow 1 \text{ s.f.}) (allow 72/12)$ A1 [1] 2. $either Q = 12 \times 10^{-6} \times 3.0 or \text{charge is shared between Y and Z} charge = 36 \mu C$ $Must have correct voltage in (iii) 1 if just quote of 36 \mu C in (iii) 2.$ (a) (i) particle must be moving with component of velocity normal to magnetic field (ii) $F = Bqv \sin \theta$ $q, v \text{and} \theta \text{explained}$ (b) (i) face BCGF shaded (ii) between face BCGF and face ADHE (c) potential difference gives rise to an electric field either $F_E = qE (no need to explain symbols)$						
1/C = 1/24 + 1/12 C = 8.0 μF (allow 1 s.f.) A1 [2] (ii) some discussion as to why all charge of one sign on one plate of X $Q = (CV =) 8.0 \times 10^{-6} \times 9.0$ $= 72 \mu C$ (iii) 1. $V = (72 \times 10^{-6})/(12 \times 10^{-6})$ $= 6.0 \text{ V} (allow 1 \text{ s.f.}) (allow 72/12)$ A1 [1] 2. either $Q = 12 \times 10^{-6} \times 3.0$ or charge is shared between Y and Z charge = 36 μC Must have correct voltage in (iii) 1 if just quote of $36 \mu C$ in (iii) 2. (a) (i) particle must be moving with component of velocity normal to magnetic field (ii) $F = Bqv \sin \theta$ $q, v \text{ and } \theta \text{ explained}$ A1 [2] (b) (i) face BCGF shaded A1 [1] (c) potential difference gives rise to an electric field either $F_E = qE$ (no need to explain symbols)			· , · · · · · · · · · · · · · · · · · ·			[4]
C = 8.0 μF (allow 1 s.f.) (ii) some discussion as to why all charge of one sign on one plate of X $Q = (CV =) 8.0 \times 10^{-6} \times 9.0$ $= 72 \mu C$ (iii) 1. $V = (72 \times 10^{-6})/(12 \times 10^{-6})$ $= 6.0 V (allow 1 s.f.) (allow 72/12)$ A1 [1] 2. either $Q = 12 \times 10^{-6} \times 3.0$ or charge is shared between Y and Z charge = 36 μC $Must \ have \ correct \ voltage \ in \ (iii) 1 \ if \ just \ quote \ of \ 36 \mu C \ in \ (iii) 2.$ (a) (i) particle must be moving with component of velocity normal to magnetic field A1 [2] (ii) $F = Bqv \sin \theta$ $q, v \text{ and } \theta \text{ explained}$ A1 [1] (b) (i) face BCGF shaded A1 [1] (ii) between face BCGF and face ADHE A1 [1]	(b)	(i)			C1	
$Q = (CV =) 8.0 \times 10^{-6} \times 9.0$ $= 72 \mu C$ (iii) 1. $V = (72 \times 10^{-6})/(12 \times 10^{-6})$ $= 6.0 V (allow 1 \text{ s.f.}) (allow 72/12)$ A1 [1] 2. $either Q = 12 \times 10^{-6} \times 3.0 \text{ or charge is shared between Y and Z}$ $charge = 36 \mu C$ $Must have correct voltage in (iii) 1 if just quote of 36 \mu C in (iii) 2. (a) (i) particle must be moving with component of velocity normal to magnetic field A1 [2] (ii) F = Bqv \sin \theta q, v \text{ and } \theta \text{ explained} A1 [2] (b) (i) face BCGF shaded A1 [1] (ii) between face BCGF and face ADHE A1 [1]$					A1	[2]
$= 6.0 \text{ V} (allow 1 \text{ s.f.}) (allow 72/12) \qquad \qquad \text{A1} \qquad [1]$ $\textbf{2.} either Q = 12 \times 10^{-6} \times 3.0 \text{ or charge is shared between Y and Z} \qquad \qquad \text{C1} \qquad \qquad \text{charge} = 36 \mu\text{C} \qquad \qquad \text{A1} \qquad [2]$ $\qquad \qquad $		(ii)	$Q = (CV =) 8.0 \times 10^{-6} \times 9.0$	(M1	[2]
charge = $36 \mu\text{C}$		(iii)			A1	[1]
Must have correct voltage in (iii)1 if just quote of 36μ C in (iii)2. (a) (i) particle must be moving with component of velocity normal to magnetic field A1 [2] (ii) $F = Bqv \sin \theta$ M1				Z		
with component of velocity normal to magnetic field (ii) $F = Bqv \sin \theta$ $q, v \text{ and } \theta \text{ explained}$ M1 (b) (i) face BCGF shaded (ii) between face BCGF and face ADHE (c) potential difference gives rise to an electric field either $F_E = qE$ (no need to explain symbols)				<u>?</u> .	A1	[2]
(ii) $F = Bqv \sin \theta$ M1 q , v and θ explainedA1 [2](b) (i) face BCGF shadedA1 [1](ii) between face BCGF and face ADHEA1 [1](c) potential difference gives rise to an electric field either $F_E = qE$ (no need to explain symbols)M1	(a)	(i)				[0]
q , v and θ explained A1 [2] (b) (i) face BCGF shaded A1 [1] (ii) between face BCGF and face ADHE A1 [1] (c) potential difference gives rise to an electric field either $F_E = qE$ (no need to explain symbols)			with component of velocity normal to magnetic field		AI	[2]
q , v and θ explained A1 [2] (b) (i) face BCGF shaded A1 [1] (ii) between face BCGF and face ADHE A1 [1] (c) potential difference gives rise to an electric field either $F_E = qE$ (no need to explain symbols)		(ii)	$F = Bqv \sin \theta$		M1	
(ii) between face BCGF and face ADHE A1 [1] (c) potential difference gives rise to an electric field $E(t)$ in $E(t)$ in $E(t)$ $E(t$		()	•		A1	[2]
(c) potential difference gives rise to an <u>electric</u> field M1 either $F_E = qE$ (no need to explain symbols)	(b)	(i)	face BCGF shaded		A1	[1]
either $F_E = qE$ (no need to explain symbols)		(ii)	between face BCGF and face ADHE		A1	[1]
	(c)				M1	
			· · ·		۸1	[2]

Mark Scheme

Syllabus

Paper

Page 3

_											ļ_				
7	(a)				M1 A1	[2]									
	(b)	(i)		reduce gnetised	flux	losses/	increa	se flu	ıx linka	age/ea	sily m	nagnetised	<u>and</u>	B1	[1]
			cause	educe en d by edd 1 mark f	y curr	ents	`		allow 'to	o preve	ent ene	rgy losses)	M1 A1	[2]
		(ii)	gives I	ating curr rise to (cl ks the <u>se</u> raday's l	hangi econd	ng) flux i <u>ary coil</u>		duces	e.m.f.	(in sec	ondary	ooil)		B1 B1 M1 A1	[4]
8	(a)		discrete quantity/packet/quantum of energy of electromagnetic radiation energy of photon = Planck constant × frequency		B1 B1	[2]									
	(b)	rate ma ma	e of emi x. kineti x. kineti	requency ssion is p c energy c energy 1 each,	oropo of ele inde	ectron de pendent	epende	ent on	freque	ncy		(1) (1) (1) (1)		В3	[3]
	(c)	$\lambda =$ ene	ergy = 4	<i>hc/λ</i> n to give .4 × 10 ⁻¹ 5 eV so r			w	give	$nction of \lambda = 35$	of <i>3.5 e</i> 5 nm nm so r				C1 M1 A1	[3]
		thre	eshold f)nm = 6	nction = 3 requency 5.67×10 ¹² Hz < 8.2	/ = 8.4 Hz	45×10 ¹⁴ I	Hz							C1 M1 A1	

Mark Scheme
GCE AS/A LEVEL – October/November 2012

Syllabus 9702 Paper 41

Page 4

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9702	41

Section B

9	(a)	e.g. zero output impedance/resistance infinite input impedance/resistance infinite (open loop) gain infinite bandwidth infinite slew rate 1 each, max. 3						
		(i) (ii)	graph: square wave correct cross-over points where $V_2 = V_1$ amplitude 5 V correct polarity (positive at $t = 0$) correct symbol for LED diodes connected correctly between V_{OUT} and earth correct polarity consistent with graph in (i) (R points 'down' if (i) correct)	M1 A1 A1 A1 M1 A1	[4] [3]			
10	of of all ir imagimagimagimagimagimagimagimagimagimag	ne s mag ges ges ge fo can	nages taken from different angles / X-rays directed from different angles section/slice (1) es in the same plane (1) combined to give image of section/slice of successive sections/slices combined ormed using a computer ormed is 3D image (1) a be rotated/viewed from different angles marks plus any two additional marks)	B1 B1 B1 B1	[6]			
11	(a)	extr mul digi data	noise can be eliminated/filtered/signal can be regenerated ra bits can be added to check for errors ltiplexing possible tal circuits are more reliable/cheaper a can be encrypted for security sensible advantages, 1 each, max. 3	В3	[3]			
	(b)	(i)	1. higher frequencies can be reproduced	B1	[1]			
			2. smaller changes in loudness/amplitude can be detected	B1	[1]			
		(ii)	bit rate = $44.1 \times 10^3 \times 16$ = $7.06 \times 10^5 \text{ s}^{-1}$	C1				
			number = $7.06 \times 10^6 \times 340$ = 2.4×10^8	A1	[2]			
12	(a)	(i)	signal in one wire (pair) is picked up by a neighbouring wire (pair)	B1	[1]			
		(ii)	outer of coaxial cable is earthed outer shields the core from noise/external signals	B1 B1	[2]			

		,		
	GCE AS/A LEVEL – October/November 2012	9702	41	
(b)	attenuation per unit length = $1/L \times 10 \lg(P_2/P_1)$ signal power at receiver = $10^{2.5} \times 3.8 \times 10^{-8}$		C1	
	$= 1.2 \times 10^{-5} \text{W}$		C1	
	attenuation in wire pair = $10 \log((3.0 \times 10^{-3})/(1.2 \times 10^{-5}))$			
	= 24 dB		C1	
	attenuation per unit length = 24/1.4 = 17 dB km ⁻¹		A1	[4]

Syllabus

Paper

Mark Scheme

Page 6