MARK SCHEME for the October/November 2013 series

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2013	9702	23	
1 volume = $\pi (14 \times 10^{-3})^2 \times 12 \times 10^{-3} (=7.389 \times 10^{-6} \text{ m}^3)$ density = mass / volume [any subject] mass = $6.8 \times 10^3 \times 7.389 \times 10^{-6} = 0.0502$			ss / volume [any subject]		C1 C1	
	weight = =	•	$502 \times 9.81 = 0.49 \text{ N}$ (mark not awarded if not to two	s.f.)	C1 A1	[4]
2			for T: s, R: m and M: kg (or seen clearly in formula)		C1	
	K =	Τ ² Μ	/ R^3 units: s ² kg m ⁻³ (allow s ² kg / m ³ or $\frac{s^2 kg}{m^3}$)		A1	[2]
	K = 6% K =	[(864 of <i>K</i> = (5.9 =	tainty in <i>K</i> : 1% (for <i>T</i>) + 3% (for <i>R</i>) + 2% (for <i>M</i>) OR = 6% $400)^2 \times 6 \times 10^{24}$] / $(4.23 \times 10^7)^3 = 5.918 \times 10^{11}$ = 0.355×10^{11} ± $0.4) \times 10^{11}$ (SI units) correct power of ten required for t % value then max. 1]		C1 C1 C1 A1	[4]
3	(a) (i)		city = rate of <u>change</u> of displacement displacement <u>change</u> / time (taken)		A1	[1]
	(ii)		eleration = rate of <u>change</u> of velocity <u>change</u> in velocity / time (taken)		A1	[1]
	(b) (i)		l constant velocity as straight line / gradient constant lle section deceleration/ speed / velocity decreases / slo	wing down as	B1	
		grad last :	radient decreases ast section lower velocity (than at start) as gradient (constant and) smaller special case: all three stages correct descriptions but no reasons 1/3]			[3]
	(ii)	velo	city = 45 / 1.5 = 30 m s ⁻¹		A1	[1]
	acce		city at 4.0 s is $(122 - 98) / 2.0 = 12 (m s^{-1})$ (allow 12 to 13) eleration = $(12 - 30) / 2.5 = -7.2 m s^{-2}$ (if answer not this value then		B1	
			omment needed to explain why, e.g. difficulty in drawing tangent)		A1	[2]
	(1V)	F = 1 = (ma (–)1500 × 7.2 = (–)11000 (10800) N		C1 A1	[2]
4	(a) gravitational PE is energy of a <u>mass</u> due to its position in a <u>gravitational field</u> elastic PE energy <u>stored</u> (in an object) <u>due to</u> (a force) changing its shape /					
			tion / being compressed / stretched / strained		B1	[2]
	(b) (i)	1.	kinetic energy = $\frac{1}{2} mv^2$ = $\frac{1}{2} \times 0.065 \times 16^2$ = 8.3(2) J		C1 A1	[2]
			$v^2 = 2gh \text{ OR PE} = mgh$ $h = 16^2 / (2 \times 9.81) = 13(.05) \text{ m}$		C1 A1	[2]

	Page 3		Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2013	9702	23	
	(ii)	KE i	ed at $t = \frac{1}{2}$ total time = 8 (m s ⁻¹)or total $t = 1.63$ ors $\frac{1}{4}$ or h at $t_{1/2} = 9.78$ (mPE is $\frac{3}{4}$ of maxratio = 3or ratio = 9.78 / 3.26)	C1 C1 A1	[3]
	(iii)		is less because (average) acceleration is greater Of reater	R average force	e B1	[1]
5	(a) (i)	OR distance between neighbouring or consecutive peaks or troughs OR wavelength is the distance moved by a wavefront in time T or one				[1]
		oscillation/cycle or period (of source)			B1	[,]
			frequency: number of wavefronts / (unit) time OR number of oscillations per unit time or oscillations/tim	ne	B1	[1]
	(ii)	spee	$ed = \underline{distance} / time = \underline{wavelength} / time period$ $= \lambda / T = \lambda f$		M1 A0	[1]
	(b) (i)	amp	litude = 4.0 mm (allow 1 s.f.)		A1	[1]
	(ii) wavelength = 18 / 3.75 (= 4.8)				C1	
		ansv	ed = $2.5 \times 4.8 \times 10^{-2}$ = 12×10^{-2} m s ⁻¹ unit consistent with wer, e.g. in cm s ⁻¹ if cm used for λ and unit changed on a 3 cm = 3.5λ used giving speed 13 (12.9) cm s ⁻¹ allow max	nswer line	A1	[2]
	(iii)	180º	P or π rad		A1	[1]
			screen and correct positions above and below ripple tan video camera	k	B1 B1	[2]
6	 (a) e.m.f. = total energy available (per unit charge) some (of the available energy) is used/lost/wasted/given out in the internal 					
			ce of the battery (hence p.d. available less than e.m.f.)		B1	[2]
	(b) (i)		<i>IR</i> 6.9 / 5.0 = 1.4 (1.38) A		C1 A1	[2]
	(ii)		ost volts / current 9– 6.9) / 1.38 = 1.5(2) Ω		C1 A1	[2]
	(c) (i)		<i>EI</i> (not <i>P</i> = <i>VI</i> if only this line given or 9 V not used in se 9 × 1.38 = 12 (12.4) W	cond line)	C1 A1	[2]
	(ii)	effic	iency = output power / total power = <i>VI</i> / <i>EI</i> = 6.9 / 9 or (9.52) / (12.4) = 0.767 / 76.7%	5	C1 A1	[2]

	Page 4		Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2013	9702	23	
7	(a) (i)	[only two	six vertical lines from plate to plate equally spaced across plates [only allow if greatest to least spacing is < 1.3, condone slight curving on the two edges. There must be no area between the plates where an additional line(s) could be added.]			
		•	w downwards on at least one line		B1	[2]
	(ii)	E = =	V / d 1200 / 40 × 10 ⁻³ = 3.0×10^4 V m ⁻¹ (allow 1 s.f.)		C1 A1	[2]
	(b) (i)		Ee $3 \times 10^4 \times 1.6 \times 10^{-19}$ = 4.8×10^{-15} N		C1 A1	[2]
	(ii)	-	ble = $F \times$ separation of charges = $4.8 \times 10^{-15} \times 15 \times 10^{-3} = 7.2 \times 10^{-17}$ N m or unit consistent with unit used for the separation		C1 A1 B1	[3]
	(iii)	[cou	top/next to +ve plate B at bottom/next to –ve plate verti ld be shown on the diagram] es are equal and opposite in same line / no resultant for		M1	
			Itant torque		A1	[2]