MARK SCHEME for the October/November 2013 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark Scheme	Syllabus	Pape	r		
				GCE A LEVEL – October/November 2013	9702	42			
		Section A							
1	(a)			ne in moving unit mass hity (to the point)		M1 A1	[2]		
	(b)	(b) (i) gravitational potential energy = GMm / x energy = $(6.67 \times 10^{-11} \times 7.35 \times 10^{22} \times 4.5) / (1.74 \times 10^{6})$ energy = 1.27×10^{7} J							
		(ii)	y	B1					
				$4.5 \times v^2 = 1.27 \times 10^7$ $2.4 \times 10^3 \text{ m s}^{-1}$		A1	[2]		
	(c)	/ at	Earth	ould attract the rock / potential at Earth('s surface) not z n, potential due to Moon not zero speed would be lower	zero / <0	M1 A1	[2]		
2	(a)	(i)	<i>N</i> : (t	otal) number of <u>molecules</u>		B1	[1]		
		(ii)	< <i>c</i> ² >	: mean square speed/velocity		B1	[1]		
	(b)	, (me	ean) k	$lm < c^2 > = NkT$ sinetic energy = $\frac{1}{2} m < c^2 >$ clear leading to $\frac{1}{2} m < c^2 > = (3/2)kT$		C1 A1	[2]		
	(c)	(i)	eithe or	er energy required = $(3/2) \times 1.38 \times 10^{-23} \times 1.0 \times 6.02$ = 12.5 J (12J if 2 s.f.) energy = $(3/2) \times 8.31 \times 1.0$ = 12.5 J	2 × 10 ²³	C1 A1 (C1) (A1)	[2]		
		(ii)	atmo	rgy is needed to push back atmosphere/do w osphere otal energy required is greater	vork against	M1 A1	[2]		
3	(a)	(i)	any	two from 0.3(0) s, 0.9(0) s, 1.50 s (<i>allow 2.1 s etc.</i>)		B1	[1]		
		(ii)	eithe or	er $v = \omega x$ and $\omega = 2\pi/T$ $v = (2\pi/1.2) \times 1.5 \times 10^{-2}$ $= 0.079 \text{ m s}^{-1}$ gradient drawn clearly at a correct position working clear to give (0.08 ± 0.01) m s^{-1}		C1 M1 A0 (C1) (M1) (A0)	[2]		

Page 3			Je 3 Mark Scheme		Syllabus	Paper	
				GCE A LEVEL – October/November 2013	9702	42	
	(b)	(i)	(i) sketch: <u>curve</u> from (±1.5, 0) passing through (0, 25) reasonable shape (<i>curved with both intersections between</i>			M1	
			(ii) at max. amplitude potential energy is total energy total energy = 4.0 mJ				
		(ii)					
4	(a)	 (i) force proportional to product of (two) charges and inversely proportional to square of separation reference to point charges (ii) F = 2 × (1.6 × 10⁻¹⁹)² / {4π × 8.85 × 10⁻¹² × (20 × 10⁻⁶)²} = 1.15 × 10⁻¹⁸ N 					[2]
							[2]
	(b)	(i) force per unit charge					
	. ,	.,	on e	ither a stationary charge		A1	[2]
		or a positive charge					[2]
		(ii)		electric field is a vector quantity electric fields are in opposite directions charges repel			
				Any two of the above, 1 each		B2	[2]
			2.	graph: line always between given lines		M1	
				crosses x-axis between 11.0 μm and 12.3 μm reasonable shape for curve		A1 A1	[3]
5	(a)	(i)	field	shown as right to left		B1	[1]
		(ii)	lines	s are more spaced out at ends		B1	[1]
	(b)	Hall voltage depends on angle <i>either</i> between field and plane of probe <i>or</i> maximum when field normal to plane of probe <i>or</i> zero when field parallel to plane of probe				M1	
						A1	[2]
	(c)	(i)	of ch	uced) e.m.f. proportional to rate nange of (magnetic) flux (linkage) w rate of cutting of flux)		M1 A1	[2]
		(ii)		move coil towards/away from solenoid rotate coil vary current in solenoid			
				insert iron core into solenoid v three sensible suggestions, 1 each)		В3	[3]

	Page 4	Mark Scheme	Syllabus	Paper 42			
		GCE A LEVEL – October/November 2013	9702				
6	force is	force due to magnetic field is constant force is (always) normal to direction of motion					
		e provides the centripetal force		A1	[3]		
	(b) <i>mv</i> ² / <i>r</i> = hence <i>q</i>	: Bqv / m = v / Br		M1 A0	[1]		
	(c) (i) q / ı	$m = (2.0 \times 10^{7}) / (2.5 \times 10^{-3} \times 4.5 \times 10^{-2})$ = $1.8 \times 10^{11} \text{ C kg}^{-1}$		C1 A1	[2]		
	pag	tch: curved path, constant radius, in direction toward e gent to curved path on entering and on leaving the field		M1 A1	[2]		
7	di <i>or</i> conce	<i>either</i> if light passes through suitable film / cork dust etc. diffraction occurs and similar pattern observed <i>or</i> concentric circles are evidence of diffraction diffraction is a wave property					
	$\lambda = h/p \text{ s}$ hence ra (special or (speed i $\lambda = h / $	ncreases so) momentum increases so λ decreases adii decrease <i>case: wavelength decreases so radii decreases – scor</i> ncreases so) energy increases (2 <i>Em</i>) so λ decreases adii decrease	res 1/3)	M1 M1 A1 (B1) (M1) (A1)	[3]		
	either E ratio = p = v	(c) electron and proton have same (kinetic) energy <i>either</i> $E = p^2 / 2m$ or $p = \sqrt{(2Em)}$ ratio = $p_e / p_p = \sqrt{(m_e / m_p)}$ = $\sqrt{\{(9.1 \times 10^{-31}) / (1.67 \times 10^{-27})\}}$ = 2.3×10^{-2}					
8	., .	o separate nucleons (in a nucleus) e to infinity		M1 A1	[2]		
	(b) (i) fissi	on		B1	[1]		
	(ii) 1.	U: near right-hand end of line		B1	[1]		
	2.	Mo: to right of peak, less than 1/3 distance from peak	to U	B1	[1]		
	3.	La: 0.4 \rightarrow 0.6 of distance from peak to U		B1	[1]		

	Page 5		5	Mark Scheme	Syllabus	Paper	
				GCE A LEVEL – October/November 2013	9702	42	
		(iii)	1.	right-hand side, mass = 235.922 u mass change = 0.210 u		C1 A1	[2]
			2.	energy = mc^2 = 0.210 × 1.66 × 10 ⁻²⁷ × (3.0 × 10 ⁸) ² = 3.1374 × 10 ⁻¹¹ J = 196 MeV (<u>need 3 s.f.</u>) (use of 1 u = 934 MeV, allow 3/3; use of 1 u = 930 MeV, allow 2/3) (use of 1.67 × 10 ⁻²⁷ not 1.66 × 10 ⁻²⁷ scores max. 2/3)	MeV or 932	C1 C1 A1	[3]
				Section B			
9	(a)	•		s on / takes signal from sensing device it gives an voltage output		B1 B1	[2]
	(b)	V_{OL}	_{JT} sho	or and resistor in series between +4 V line and earth own clearly across <i>either</i> thermistor <i>or</i> resistor own clearly across thermistor		M1 A1 A1	[3]
	(c)		swit isola swit	ote switching ching large current by means of a small current ating circuit from high voltage ching high voltage by means of a small voltage/current sensible suggestions, 1 each to max. 2)		B2	[2]
10	(a)	pulse (of ultrasound) produced by quartz / piezo-electric crystal reflected from boundaries (between media) reflected pulse detected by the ultrasound transmitter(1)signal processed and displayed intensity of reflected pulse gives information about the boundary (1) time delay gives information about depth (four B marks plus any two from the four, max. 6)(1)				B1 B1 B1 B1 B2	[6]
	(b)	shorter wavelength smaller structures resolved / detected (<i>not more sharpness</i>)				B1 B1	[2]
	(c)	(i)		$I_0 e^{-\mu x}$ $p = \exp(-23 \times 6.4 \times 10^{-2})$ = 0.23		C1 C1 A1	[3]
		(ii)		r signal has passed through greater thickness of mediur as greater attenuation / greater absorption / smaller inte		M1 A1	[2]

Page 6			5	Mark Scheme	Syllabus	Pape	r
				GCE A LEVEL – October/November 2013	9702	42	
11	(a)	left-	left-hand bit underlined				[1]
	(b)	 (b) 1010, 1110, 1111, 1010, 1001 (5 correct scores 2, 4 correct scores 1) (c) significant changes in detail of V between samplings so frequency too low 					[2]
	(c)						[2]
12	(a)	e.g. logarithm provides a smaller number gain of amplifiers is series found by addition, (not multiplication) (<i>any sensible suggestion</i>)				B1	[1]
	(b)	(i) optic fibre			B1	[1]	
		(ii) attenuation/dB = 10 lg(P_2/P_1) = 10 lg({6.5 × 10 ⁻³ }/{1.5 × 10 ⁻¹⁵ }) = 126					
			leng	th = 126 / 1.8 = 70 km		A1	[3]