MARK SCHEME for the October/November 2013 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2				Syllabus	Paper	•		
				GCE A LEVEL – October/November 2013	9702	43			
	Section A								
1		square of		force proportional to product of the two masses and inversely proportional to the square of their separation <i>either</i> reference to point masses <i>or</i> separation >> 'size' of masses		M1 A1	[2]		
		GM whe	gravitational force provides the centripetal force $GMm/R^2 = mR\omega^2$ where <i>m</i> is the mass of the planet $GM = R^3\omega^2$						
	. ,		\boldsymbol{N}	T $M_{\text{star}} / M_{\text{Sun}} = (R_{\text{star}} / R_{\text{Sun}})^3 \times (T_{\text{Sun}} / T_{\text{star}})^2$ $M_{\text{star}} = 4^3 \times (\frac{1}{2})^2 \times 2.0 \times 10^{30}$ $= 3.2 \times 10^{31} \text{ kg}$ $M_{\text{star}} = (2\pi)^2 R_{\text{star}}^3 / GT^2$ $= \{(2\pi)^2 \times (6.0 \times 10^{11})^3\} / \{6.67 \times 10^{-11} \times (2 \times 365 \times 10^{-11} \text{ kg})\}$	24 × 3600) ² }	C1 C1 (C1) (C1) (A1)	[3]		
2	(a)	(i)		of kinetic and potential energies of the molecules ence to random distribution		M1 A1	[2]		
		(ii)		deal gas, no intermolecular forces o potential energy (only kinetic)		M1 A1	[2]		
	(b)	(i)	eithe or	er change in kinetic energy = $3/2 \times 1.38 \times 10^{-23} \times 1.0 \times$ = 2240 J R = kN_A energy = $3/2 \times 1.0 \times 8.31 \times 180$ = 2240 J	< 6.02 × 10 ²³ × 180) C1 A1 (C1) (A1)	[2]		
		(ii)	2240	ease in internal energy = heat supplied + work done on) = energy supplied – 1500 gy supplied = 3740 J	system	B1 C1 A1	[3]		
3	• •			e bringing unit positive charge hity (to the point)		M1 A1	[2]		
	(b)	(i)	eithe or	er both potentials are positive/same sign so same sign gradients are positive & negative (so fields in oppos so same sign	site directions)	M1 A1 (M1) (A1)	[2]		
		(ii)	the i	ndividual potentials are summed		B1	[1]		
	(iii)	allov	v value of x between 10 nm and 13 nm		A1	[1]		
	(iv)		0.43 V (allow $0.42 V \rightarrow 0.44 V$) gy = 2 × 1.6 × 10 ⁻¹⁹ × 0.43 = 1.4 × 10 ⁻¹⁹ J		M1 A1 A1	[3]		

	Page 3	3	Mark Scheme	Syllabus	Paper	
			GCE A LEVEL – October/November 2013	9702	43	
4	(a) e.g	in sn blocl in os	e energy (do not allow 'store charge') noothing circuits king d.c. scillators sensible suggestions, one each, max. 2		B2	[2]
	(b) (i)	pote	ntial across each capacitor is the same $and Q = CV$		B1	[1]
	(ii)	CV =	charge Q = $Q_1 + Q_2 + Q_3$ = $C_1V + C_2V + C_3V$ w Q = CV here or in (i))		M1 M1	
		so C	$c = C_1 + C_2 + C_3$		A0	[2]
	(c) (i)					
	(ii)				A1 A1	[1]
						[']
5	(a) (i)	-	on (of space) er where a moving charge (may) experience a force around a magnet where another magnet experience	es a force	B1	[1]
	(ii)	(Ø=) BA sin θ		A1	[1]
	(b) (i)	plan	e of frame is always parallel to B_V /flux linkage always	zero	B1	[1]
	(ii)		= $1.8 \times 10^{-5} \times 52 \times 10^{-2} \times 95 \times 10^{-2}$ = 8.9×10^{-6} Wb		C1 A1	[2]
	(c) (i)	char	uced) e.m.f. proportional to rate of nge of (magnetic) flux (linkage) w rate of cutting of flux)		M1 A1	[2]
	(ii)	e.m.	f. = $(8.9 \times 10^{-6}) / 0.30$ = 3.0×10^{-5} V		A1	[1]
	(iii)		question part was removed from the assessment. All or rded 1 mark.	candidates were	B1	[1]

	Pag	je 4		Mark Scheme	Syllabus	Paper	
				GCE A LEVEL – October/November 2013	9702	43	
6	. ,	or		ther constant speed parallel to plate accelerated motion/force normal to plate/in direction field not circular			
	(b)	(i)		ction of force due to magnetic field opposite to that due netic field into plane of page	to electric field	B1 B1	[2]
	((ii)		e due to magnetic field = force due to electric field = qE		B1	
			B =	E/v		C1	
				$(2.8 \times 10^4) / (4.7 \times 10^5)$ $6.0 \times 10^{-2} \text{ T}$		A1	[3]
	(c)	(i)	no c	hange/not deviated		B1	[1]
		(ii)	devia	ated upwards		B1	[1]
	(i	iii)	no c	hange/not deviated		B1	[1]
7	(a)	(i)		mum photon energy mum energy to remove an electron (from the surface)		B1 B1	[2]
		(ii)	or	er maximum KE is photon energy – work function ene max KE when electron ejected from the surface		B1	
				gies lower than max because energy required to surface	bring electron	to B1	[2]
	(b)	(i)		shold frequency = 1.0×10^{15} Hz (allow $\pm 0.05 \times 10^{15}$ K function energy = hf_0 = $6.63 \times 10^{-34} \times 1.0 \times 10^{15}$) ¹⁵)	C1 C1	
			(allo the l	= 6.63×10^{-19} J w alternative approaches based on use of co-ordir	nates of points of	A1 on	[3]
		(ii)	sket	ch: straight line with same gradient displaced to right		M1 A1	[2]
	(1	iii)		nsity determines number of photons arriving per unit tir nsity determines number of electrons per unit time (not		B1 B1	[2]
8		that per	t deca unit t	•	nuclei in samp	le M1 A1	[2]
	(b)	(i)	num	ber = $(1.2 \times 6.02 \times 10^{23}) / 235$ = 3.1×10^{21}		C1 A1	[2]

Pa		Page 5		Mark Scheme	Syllabus	Paper	•
				GCE A LEVEL – October/November 2013	9702	43	
	ne			$N_0 e^{-\lambda t}$ igible activity from the krypton arium, $N = (3.1 \times 10^{21}) \exp(-6.4 \times 10^{-4} \times 3600)$ $= 3.1 \times 10^{20}$		B1 C1	
			activ	vity = λN = 6.4 × 10 ⁻⁴ × 3.1 × 10 ²⁰ = 2.0 × 10 ¹⁷ Bq		C1 A1	[4]
				Section B			
9	(a)	e.g	infin infin infin	output impedance/resistance ite input impedance/resistance ite (open loop) gain ite bandwidth ite slew rate			
		(1 e		max. 3)		B3	[3]
	(b)	(i)	gain	= 1 + (10.8 / 1.2) = 10		C1 A1	[2]
		(ii)	horiz	bh: straight line from (0,0) towards V_{IN} = 1.0 V, V_{OUT} = 1 zontal line at V_{OUT} = 9.0 V to V_{IN} = 2.0 V ect +9.0 V → -9.0 V (and correct shape to V_{IN} = 0)	0 V	B1 B1 B1	[3]
10	(a)	spii	n/pre <i>ner</i> fr	in/precess cess about direction of magnetic field equency of precession depends on magnetic field stre	ngth	B1 B1	
		or large field means frequency in radio frequency range			B1	[3]	
	(b)	of s ena	subjec ables	orm field means frequency of precession different in ct location of precessing nuclei to be determined thickness of slice to be varied/location of slice to be ch	-	B1 B1 B1 B1	[3]
11	(a)	(i)		er series of 'highs' and 'lows' <i>or</i> two discrete values no intermediate values		M1 A1	[2]
		(ii)		noise can be eliminated (NOT 'no noise') signal can be regenerated addition of extra data to check for errors larger data carrying capacity cheaper circuits		5.	
				more reliable circuits (any three, 1 each)		B3	[3]

	Page 6			Mark Scheme	Syllabus	Paper	
				GCE A LEVEL – October/November 2013	9702	43	
	(b)	(i)	1. a	mplifier		B1	[1]
			2. di	igital-to-analogue converter (allow DAC)		B1	[1]
		(ii)		ut of ADC is number of digits all at one time Ilel-to-serial sends digits one after another		B1 B1	[2]
12	(a)	e.g.	large	ittle ionospheric reflection e information carrying capacity r two sensible suggestions, 1 each)		B2	[2]
	(b)	•		(very) low power signal received at satellite amped by high-power transmitted signal		M1 A1	[2]
	(c)	atte	nuati	on/dB = 10 lg(P_2/P_1) 185 = 10 lg($\{3.1 \times 10^3\}/P$) $P = 9.8 \times 10^{-16}$ W		C1 C1 A1	[3]