

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS
Paper 4 Mechanics
March 2017
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.

 Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2017 Page 2 of 7

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE Any Equivalent Form (of answer is equally acc
--

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \(\lambda \)" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2017 Page 3 of 7

Question	Answer	Marks	Guidance
1(i)	$KE = \frac{1}{2} \times 0.4 \times 12^2 = 28.8 J$	B1	
	Total:	1	
1(ii)	PE gain = $0.4gh$ [= $4d \sin 30$]	B1	h = height gained d = distance travelled up the plane
	4h = 28.8	M1	Using KE loss = PE gain
	$h = 7.2 h = d \sin 30 d = 14.4 m$	A1	
	Total:	3	

Question	Answer	Marks	Guidance
2		M1	Resolve forces horizontally and/or vertically
	$T_{\rm A} \sin 20 + T_{\rm B} \sin 40 = 16$	A1	Correct vertical equation
	$T_{\rm A}\cos 20 = T_{\rm B}\cos 40$	A1	Correct horizontal equation
		M1	Attempt to solve for $T_{\rm A}$ and/or $T_{\rm B}$
	$T_{\rm A} = 14.2 {\rm N}$	A1	$T_{\rm A} = 14.1528$
	$T_{\rm B} = 17.4 {\rm N}$	A1	$T_{\rm B} = 17.3610$
	Total:	6	
	Alternative method for Question 2		Question 2
		M1	Attempt to use Lami's Theorem
	$\frac{16}{\sin 120} = \frac{T_A}{\sin 130}$	A1	
	$\frac{16}{\sin 120} = \frac{T_B}{\sin 110}$	A1	
		M1	Attempt to solve for $T_{\rm A}$ and/or $T_{\rm B}$
	$T_{\rm A} = 14.2 {\rm N}$	A1	
	$T_{\rm B} = 17.4 {\rm N}$	A1	
	Total:	6	

© UCLES 2017 Page 4 of 7

Question	Answer	Marks	Guidance
3	$R = 0.6g \cos 21 [= 5.60]$	B1	
	$F = 0.3R = 1.8 \cos 21 = 1.68$	M1	Using $F = \mu R$
	$P + F = 6 \sin 21[=2.15]$	M1	Slipping down
	P = 2.15 - 1.68 = 0.470 AG	A1	Least possible value
	$P - F = 6 \sin 21$	M1	Slipping up
	P = 2.15 + 1.68 = 3.83	A1	Greatest possible value
	Total:	6	

Question	Answer	Marks	Guidance
4(i)	36000 = 800v	M1	Using $P = Fv$
	$v = 45 \mathrm{m s^{-1}}$	A1	Speed of the car
	$AB = 45 \times 120 = 5400 \mathrm{m}$	A1	
	Total:	3	
4(ii)	-800 = 900a [a = -8/9]	M1	Using Newton's 2nd law
	$v^2 = 45^2 - \frac{16}{9} \times 450$	M1	Using $v^2 = u^2 + 2as$
	$v = 35 \text{ ms}^{-1}$	A1	Speed of the car at C
	Total:	3	
	Alternative method for Question 4(ii)		uestion 4(ii)
	$0.5 \times 900 \times (45 - v^2)$	M1	Attempt change in KE
	$0.5 \times 900 \times (45 - v^2) = 800 \times 450$	M1	KE loss = WD against Friction
	$v = 35 \text{ m s}^{-1}$	A1	Speed of the car at C
	Total:	3	

© UCLES 2017 Page 5 of 7

Question	Answer	Marks	Guidance
4(iii)	CD = 6637.5 - 5400 - 450 = 787.5	B1	
	$0 = 35^2 - 2d \times 787.5$	M1	Using $v^2 = u^2 + 2as$, $a = -d$
	$d = 7/9 = 0.778 \mathrm{m s}^{-2}$	A1	d = deceleration
	$P = 900 \times (7/9) = 700$	A1	Using $F = ma$
	Total:	4	

Question	Answer	Marks	Guidance
5(i)	$0= a + b \times 35^{2} 40 = a + b \times 15^{2}$	M1	For matching velocities at $t = 15$ and using $v = 0$ at $t = 35$
	$[1000b = -40 \rightarrow b = -0.04]$ $[a = 0.04 \times 352 = 49]$	M1	Solve for a and b
	a = 49 and b = -0.04 AG	A1	
	Total:	3	
5(ii)	$0 \leqslant t \leqslant 5$ correct	B1	Increasing quadratic, from (0,0) to (5,20), concave up
	$5 \leqslant t \leqslant 15$ correct	B1	Line from (5,20) to (15,40)
	$15 \leqslant t \leqslant 35$ correct	B1	Decreasing quadratic, from (15,40) to (35,0), concave down
	20 and 40 seen correct on <i>v</i> -axis	B1	
	Total:	4	
5(iii)	$A_1 = \int_0^5 0.8t^2 dt = \frac{100}{3}$	B1	
	$A_2 = \frac{1}{2}(20+40) \times 10 = 300$	M1	Using trapezium rule or integration for $t = 5$ to $t = 15$
	$A_3 = \int_{15}^{35} (a+bt^2) dt$ $= 49t - \frac{0.04}{3}t^3$	M1	Attempt to integrate the quadratic function from $t = 15$ to $t = 35$
	$A_3 = 453.3333 = 1360/3$	A1	
	Total Distance = 2360/3 = 787 m	A1	
	Total:	5	

© UCLES 2017 Page 6 of 7

Question	Answer	Marks	Guidance
6(i)		M1	Apply Newton's law to either of the particles
	12 - T = 1.2a and $T - 8 = 0.8a$	A1	Both equations correct
		M1	Solve for a and T
	$a = 2 \mathrm{m s^{-2}}$ and $T = 9.6 \mathrm{N}$	A1	
	Total:	4	
6(ii)	$[0.64 = \frac{1}{2} \times 2 \times t_1^2]$ $[v = 2t_1]$	M1	Attempt to find time t_1 taken for 1.2 kg particle to reach ground and/or its speed v at the ground
	$t_1 = 0.8$	A1	
	$v = 2 \times 0.8 = 1.6$	A1	
	$[0 = 1.6 - 10t_2]$ [1.6 ² = 2 × 10 × s ₂]	M1	For attempting to find the time t_2 and/or distance travelled s_2 as $0.8 \mathrm{kg}$ particle comes to rest
	$t_2 = 0.16$	A1	
	$s_2 = 0.128$	A1	
	$t_3 = 1 - 0.8 - 0.16 = 0.04$ $s_3 = \frac{1}{2} \times 10 \times 0.04^2$	B1	Finding the distance s_3 travelled downwards in t_3 seconds
	Total distance travelled = 0.64 + 0.128 + 0.008 = 0.776 m	B1	
	Total:	8	

© UCLES 2017 Page 7 of 7