

NOVEMBER 2002

GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT:9709/2

MATHEMATICS (Pure 2)

Page 1	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2002	9709	2

And the state of t

1	EITHER:	State or imply non-modular inequality $(2x-1)^2 < (3x)^2$, or corresponding equation Expand and make reasonable solution attempt at $2/\sqrt{x}$ 3-term quadratic, or equivalent	Bi Mi	O
		Obtain critical values -1 and $\frac{1}{5}$	Al	
		State correct answer $x < -1$, $x > \frac{1}{5}$	A1	
	OR:	State due correct equation for a critical value e.g. $2x - 1 = 3x$	M1	0
	OA.	State two relevant equations separately e.g. $2x - 1 = 3x$ and $2x - 1 = -3x$	Al	, •
		Obtain critical values -1 and $\frac{1}{5}$, A 1	
		State correct answer $x < -1$, $x > \frac{1}{5}$	A1	
	OR:	State one critical value (probably $x = -1$), from a graphical method or by inspection or by		•
٠,		solving a linear inequality	• B1	
		State the other critical value correctly State correct answer $x < -1$, $x > \frac{1}{5}$	B2 B1	4
			DI.	4
٠.		[The answer $\frac{1}{5} < x < -1$ scores B0.]		
_	C		D1	
2		obtain $-2 + a + b = 0$, or equivalent e $x = -2$ and equate to -5	B1 M1	
		term equation, or equivalent	A1	
	Solve a r	elevant pair of equations, obtaining a or b	M1	
	Obtain b	oth answers $a = 3$ and $b = -1$	A1	5
—				
3	(i) State	or imply that $9^x = y^2$	B1	1
_		out recognisable solution method for quadratic in y	Ml	•
	Obta	in $y = \frac{1}{2}$ and $y = 3$ from $2y^2 - 7y + 3 = 0$, A1	
,		og method to solve an equation of the form $3^x = k$	M1	
	Obta	in answer $x = -\frac{\ln 2}{\ln 3}$, or exact equivalent $\{ 1, \lambda \}$	Al"	•
		exact answer $x = 1$ (no penalty if logs used)	В1	5
4	(i) Make	e recognisable sketches over the given range of a suitable pair of graphs e.g. $y = \sin x$ and $y = \frac{1}{x}$	B1	
		or imply connection between intersections and roots and justify given statement	B1	2
	(ii) Calci	ulate values (or signs) of $\sin x - \frac{1}{x^2}$ at $x = 1$ and $x = 1.5$	Ml	
	Deri	ve given result correctly	A1	2
	(iii) Rear	range $\sin x = \frac{1}{x^2}$ and obtain given answer	Bl	1
		the iterative formula correctly with $1 \le x_n \le 1.5$	Ml	
	Obta	in final answer 1.07	A1	
		v sufficient iterations to justify its accuracy to 3d.p., or show there is a sign change in the		•
	inter	val (1.065, 1.075)	A1	3
				5

Page 2	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2002	9709	2

` '	Use relevant formulae for $\cos (x - 30^\circ)$ and $\sin (x - 60^\circ)$ Use $\sin 30^\circ = \cos 60^\circ = \frac{1}{2}$ and $\sin 60^\circ = \cos 30^\circ = \frac{\sqrt{3}}{2}$		ve sign e		M1(dep	*/
	Use sin 30° = $\cos 60^\circ - \frac{1}{2}$ and sin $60^\circ - \cos 30^\circ - \frac{1}{2}$	•			writach)
	Collect terms and obtain given answer correctly	•			A 1	3
(ii)	Carry out correct processes to evaluate a single trig ratio	•	1		M1	
	Obtain answer 73.9°				A1	
	Obtain second answer 253.9° and no others				A1 🖍	3
(iii)	State or imply that $\cos^2 x = \frac{1}{13}$ or $\sin^2 x = \frac{12}{13}$. 4	Bl	
	Use a relevant trig formula to evaluate $\cos 2x$		•		MI	
	Obtain exact answer $-\frac{11}{13}$ correctly				Al	3
	If les of only say, cos r = + 1 probably from a right triang	de can eam Bl	MIANI	**	-	
	[Use of only say $\cos x = +\frac{1}{\sqrt{13}}$, probably from a right triang	gie, can ean Di	WITAU.J			

6 (a) Obtain indefinite integral $-\frac{1}{2}\cos 2x + \sin x$	****	B1 + B1	
Use limits with attempted integral		- M1	
Obtain answer 2 correctly with no errors		A1	4
(b) (i) Identify R with correct definite integral and attempt to integrate		M1	
Obtain indefinite integral $\ln (x+1)$		Bl	
Obtain answer $R = \ln (p+1) - \ln 2$		A1	3
(ii) Use exponential method to solve an equation of the form $\ln x = k$		Ml	
Obtain answer $p = 13.8$.A1	2

(i)	State $6y \frac{dy}{dx}$ as the derivative of $3y^2$	В1	
	State $\pm 2x \frac{dy}{dx} \pm 2y$ as the derivative of $-2xy$ (allow any combination of signs here)	B1 -	
	Equate attempted derivative of LHS to 0 (or 10) and solve for $\frac{dy}{dx}$	Ml	
	Obtain the given answer correctly	A1 .	4
(ii)	State or imply the points lie on $y-2x=0$ $\exp\left((y-3x)\right)$ $= 0$ Carry out complete method for finding one coordinate of a point of intersection of $y=kx$ with the	В1	②
		Ml	
		Al	
	Obtain one correct point e.g. $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$	Al N	⊘ 5 ⊙
		Equate attempted derivative of LHS to 0 (or 10) and solve for $\frac{dy}{dx}$ Obtain the given answer correctly [The M1 is dependent on at least one of the B marks being earned.] (ii) State or imply the points lie on $y-2x=0$ $(y-3x)$ $(y-3x)$	State $\pm 2x \frac{dy}{dx} \pm 2y$ as the derivative of $-2xy$ (allow any combination of signs here) Equate attempted derivative of LHS to 0 (or 10) and solve for $\frac{dy}{dx}$ Obtain the given answer correctly [The M1 is dependent on at least one of the B marks being earned.] (ii) State or imply the points lie on $y - 2x = 0$ Carry out complete method for finding one coordinate of a point of intersection of $y = kx$ with the given curve Obtain $10x^2 = 10$ or $2\frac{1}{2}y^2 = 10$ or 2-term equivalent A1