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1 Solve the inequality ∣∣2x − 8∣∣ < 5. [4]

2 Expand (2 + x2)−2 in ascending powers of x, up to and including the term in x4, simplifying the
coefficients. [4]

3 Solve the equation

cos θ + 3 cos 2θ = 2,

giving all solutions in the interval 0◦ ≤ θ ≤ 180◦. [5]

4 The equation of a curve is √
x + √

y = √
a,

where a is a positive constant.

(i) Express
dy
dx

in terms of x and y. [3]

(ii) The straight line with equation y = x intersects the curve at the point P. Find the equation of the
tangent to the curve at P. [3]

5 (i) By sketching suitable graphs, show that the equation

sec x = 3 − x2

has exactly one root in the interval 0 < x < 1
2
π. [2]

(ii) Show that, if a sequence of values given by the iterative formula

xn+1 = cos−1( 1

3 − x2
n

)

converges, then it converges to a root of the equation given in part (i). [2]

(iii) Use this iterative formula, with initial value x1 = 1, to determine the root in the interval 0 < x < 1
2
π

correct to 2 decimal places, showing the result of each iteration. [3]
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The diagram shows the curve y = (3 − x)e−2x and its minimum point M. The curve intersects the
x-axis at A and the y-axis at B.

(i) Calculate the x-coordinate of M. [4]

(ii) Find the area of the region bounded by OA, OB and the curve, giving your answer in terms of e.
[5]

7 The complex number u is given by u = 7 + 4i
3 − 2i

.

(i) Express u in the form x + iy, where x and y are real. [3]

(ii) Sketch an Argand diagram showing the point representing the complex number u. Show on the
same diagram the locus of the complex number � such that ∣∣� − u∣∣ = 2. [3]

(iii) Find the greatest value of arg � for points on this locus. [3]

8 Let f(x) = x3 − x − 2(x − 1)(x2 + 1) .

(i) Express f(x) in the form

A + B
x − 1

+ Cx + D

x2 + 1
,

where A, B, C and D are constants. [5]

(ii) Hence show that � 3

2
f(x) dx = 1. [4]
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9 Compressed air is escaping from a container. The pressure of the air in the container at time t is P,
and the constant atmospheric pressure of the air outside the container is A. The rate of decrease of
P is proportional to the square root of the pressure difference (P − A). Thus the differential equation
connecting P and t is

dP
dt

= −k
√(P − A),

where k is a positive constant.

(i) Find, in any form, the general solution of this differential equation. [3]

(ii) Given that P = 5A when t = 0, and that P = 2A when t = 2, show that k = √
A. [4]

(iii) Find the value of t when P = A. [2]

(iv) Obtain an expression for P in terms of A and t. [2]

10 The lines l and m have vector equations

r = i − 2k + s(2i + j + 3k) and r = 6i − 5j + 4k + t(i − 2j + k)
respectively.

(i) Show that l and m intersect, and find the position vector of their point of intersection. [5]

(ii) Find the equation of the plane containing l and m, giving your answer in the form ax + by + c� = d.
[6]
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