MARK SCHEME for the October/November 2007 question paper

9709 MATHEMATICS

9709/03

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9709	03

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9709	03

The following abbreviations may be used in a mark scheme or used on the scripts:

A E E		/ r · · · · · · · · · · · · · · · · · · ·
AEF	Any Equivalent Form	(of answer is equally acceptable)

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme	Syllabus	Paper	
		GCE A/AS LEVEL – October/November 2007	9709	03	
	Obtain indefini	te integral of the form $a\ln(2x-1)$, where $a = \frac{1}{2}$, 1, or 2		M1	
	Use limits and	obtain equation $\frac{1}{2}\ln(2k-1) = 1$		A1	
	Use correct me	thod for solving an equation of the form $a\ln(2k-1) = 1$, where $a =$	$=\frac{1}{2}$, 1, or 2, for k	M1	
	Obtain answer	$k = \frac{1}{2}(e^2 + 1)$, or exact equivalent	-	A1	[4
_					
2		npt division by $x^2 + x + 2$ reaching a partial quotient of $x^2 + kx$		M1	
	Com	plete the division and obtain quotient $x^2 - x + 2$		A1	
		te constant remainder to zero and solve for <i>a</i> in answer $a = 4$		M1 A1	
		in answer $u = 4$ ig the unknown factor $x^2 + bx + c$, obtain an equation in b and/or	a or state without	ΔΙ	
		ing two coefficients with the correct moduli	c, of state without	M1	
		in factor $x^2 - x + 2$		Al	
		a = 2c to find a		M1	
		in answer $a = 4$		A1	[4
;	Using 1 and ln	x as parts reach $x \ln x \pm \int x \cdot \frac{1}{x} dx$		M1*	
		te integral $x \ln x - x$		A1	
		ect limits correctly		M1(dep*)	Ľ
	Obtain given a	liswei		A1	[4
4		product or quotient rule		M1	
		vative in any correct form vative to zero and solve for x		A1 M1	
	-	wer $x = \frac{1}{4}\pi$ or 0.785 with no errors seen		A1	[4
		ropriate method for determining the nature of a stationary point		M1	
		oint is a maximum point with no errors seen		. A1	[2
		e answer 45° deduct final A1 in part (i), and deduct A1 in part (ii) exponential.]	if this value in deg	rees 1s	
;	(i) Use correct	tan(A + B) formula to obtain an equation in tan x		M1*	
	Use tan 45°	P = 1		M1(dep*)	
	Obtain the	given answer		A1	[3
		onable attempt to solve the given quadratic for one value of $\tan x$		M1	
	Obtain tan.	$x = -1 \pm \sqrt{2}$, or equivalent in the form $(a \pm \sqrt{b})/c$ (accept 0.4, -2	.4)	A1	
		wer $x = 22.5^{\circ}$		A1	
		answer $x = 112.5$ and no others in the range		A1	[4
	llanore and	wers outside the range.]			

	Page 5	Mark Scheme	Syllabus	Paper	
		GCE A/AS LEVEL – October/November 2007	9709	03	
6		ognisable sketch of an appropriate graph, e.g. $y = \ln x$		B1	
	Sketch an a	ppropriate second graph, e.g. $y = 2 - x$, correctly and justify the gi	ven statement	B1	[2
	(ii) Consider si	gn of $2 - x - \ln x$ when $x = 1.4$ and $x = 1.7$, or equivalent		M1	
		he argument with correct calculations		Al	[2
	1	C			•
	(iii) Rearrange t	the equation $x = \frac{1}{3}(4 + x - 2\ln x)$ as $2 - x = \ln x$, or vice versa		B1	[1]
				M 1	
		ative formula correctly at least once l answer 1.56		M1 A1	
		cient iterations to 4 d.p. to justify its accuracy to 2 d.p., or show the	ere is a sign change		
		(1.555, 1.565)	0 0	A1	[3]
7	(i) Separate va	riables correctly and attempt integration of both sides		M1*	
		ln N, or equivalent		A1	
	Obtain term	$\frac{k}{0.02}\sin(0.02t)$, or equivalent		A1	
		V = 125 to evaluate a constant, or as limits, in a solution containing	g terms of the form	$a \ln N$	
)2 <i>t</i>), or equivalent		M1	
	Obtain any o	correct form of solution, e.g. $\ln N = 50k\sin(0.02t) + \ln 125$		A1	[5]
	(ii) Substituting	N = 166 and $t = 30$, evaluate k		M1(dep*)	
		0.0100479(accept k = 0.01)		Al	[2]
	(iii) Rearrange a	nd obtain $N = 125 \exp(0.502 \sin(0.02t))$, or equivalent		B1	
		t = -1 in the expression for N, or equivalent		M1	
		value 75.6 (accept answers in the interval [75, 76])		A1	[3]
	[For the B1,	accept 0.5 following $k = 0.01$, and allow 4.8 or better for ln 125.]		
8	(a) (i) <i>EITHER</i>	R: Carry out multiplication of numerator and denominator by $1 + 2$	2i. or equivalent	M1	
		Obtain answer $2 + i$, or any equivalent of the form $(a + ib)/c$		A1	
	<i>OR</i> 1:	Obtain two equations in x and y , and solve for x or for y		M1	
	OR2:	Obtain answer $2 + i$, or equivalent Using the correct processes express z in polar form		A1 M1	
	OK2.	Obtain answer $2 + i$, or equivalent		Al	[2]
		, , , , , , , , , , , , , , , , , , ,			
	(ii) State the	at the modulus of z is $\sqrt{5}$ or 2.24		B1	
	State the	at the argument of z is 0.464 or 26.6°		B1	[2]
	(b) EITHER S	Square $x + iy$ and equate real and imaginary parts to 5 and -12 res	nectivelv	M1	
		$x^2 - y^2 = 5 \text{ and } 2xy = -12$	r • • • • • •	Al	
		liminate one variable and obtain an equation in the other		M1	
		bbtain $x^4 - 5x^2 - 36 = 0$ or $y^4 + 5y^2 - 36 = 0$, or 3-term equivaler	nt	A1	
		btain answer $3-2i$	-	A1	
		bbtain second answer $-3 + 2i$ and no others		A1	
		SR: Allow a solution with $2xy = 12$ to earn the second A1 and the	is a maximum of 3/		
		onvert 5 –12i to polar form (R, θ)		M1	
		So the fact that a square root has the polar form $(\sqrt{R}, \frac{1}{2}\theta)$		M1	
	0	obtain one root in polar form, e.g. $(\sqrt{13}, -0.588)$ or $(\sqrt{13}, -33.7^{\circ})$		A1 + A1	
		btain answer 3 –2i		A1	
	0	btain answer $-3 + 2i$ and no others		A1	[6]

Page	6	Mark Scheme	Syllabus	Paper		
		GCE A/AS LEVEL – October/November 2007	9709	03		
(i) State	e or imp	ly the form $\frac{A}{1-r} + \frac{B}{1+2r} + \frac{C}{2+r}$		B1		
				271		
	•	evant method to determine a constant 1, $B = 2$ and $C = -4$	A 1 + .	M1 A1 + A1	I	
000	alli A –	1, b - 2 and $C4$	AI + Z	AI + AI	I	
(ii) Use	i) Use correct method to obtain the first two terms of the expansion of $(1-x)^{-1}$, $(1+2x)^{-1}$, $(2+x)^{-1}$,					
	$(+\frac{1}{2}x)^{-1}$			M1		
2		$A1\sqrt{+A1}$				
			AIV + AI			
		pansions and obtain answer $1 - 2x + \frac{17}{2}x^2$		A1		
[Bir	nomial c	oefficients such as $\binom{-1}{2}$ are not sufficient for the M1. The f.t. is o	n A, B, C.]			
[Ap	ply this	scheme to attempts to expand $(2 - x + 8x^2)(1 - x)^{-1}(1 + 2x)^{-1}(2 + x)^{-1}(1 + 2x)^{-1}(2 + x)^{-1}(1 + 2x)^{-1}(1 + 2x)^{-1}(1$	$(x)^{-1}$, giving M1A1A	IA1		
	1	ansions, and A1 for the final answer.]				
		laurin, giving M1A1 $\sqrt{A1}\sqrt{for}$ f(0) = 1 and f'(0) = -2, A1 \sqrt{for} f'	'(0) = 17 and A1 for the theorem (0) and (0) and (0) and (0) and (0) are the term (0) and (0) are the term (0) are term (0) are the term (0	ne		
11112	ai answe	r (f.t. is on A, B, C).]				
		or \mathbf{r} and expand the given scalar product, or correct equivalent, to	obtain an equation in			
		ar equation formed from a scalar product for s and position vector $3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ for A		M1 A1		
000	um 5 2			711		
		ly a normal vector of p is $2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$, or equivalent		B1		
		ect process for evaluating a relevant scalar product, e.g. $(i - 2j + j)$		M1		
		prect process for calculating the moduli, divide the scalar product evaluate the inverse sine or cosine of the result	t by the product of the	M1		
		answer 72.2° or 1.26 radians		A1		
(iii) ETT		aking the direction vector of the line to be $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$, state equation at equation $a - 2b + 2c = 0$	$\tan 2a - 3b + 6c = 0$	B1 B1		
		blve to find one ratio, e.g. $a : b$		M1		
		btain ratio $a:b:c=6:2:-1$, or equivalent		Al		
	St	ate answer $\mathbf{r} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(6\mathbf{i} + 2\mathbf{j} - \mathbf{k})$, or equivalent		A1√		
OR		tempt to calculate the vector product of a direction vector for the	line <i>l</i> and a normal			
		ector of the plane p, e.g. $(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) \times (2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k})$		M2		
		btain two correct components of the product btain answer $-6\mathbf{i} - 2\mathbf{j} + \mathbf{k}$, or equivalent		A1 A1		
		ate answer $\mathbf{r} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(-6\mathbf{i} - 2\mathbf{j} + \mathbf{k})$, or equivalent		A1√		
OR2		tain the equation of the plane containing A and perpendicular to t	the line <i>l</i>	M1		
	St	ate answer $x - 2y + 2z = 1$, or equivalent		A1√		
		nd position vector of a second point B on the line of intersection of	of this plane with	N // 1		
		e plane p , e.g. $9\mathbf{i} + 4\mathbf{j}$		M1		
	0	btain a direction vector for this line of intersection $e = e^{-2i}$	Z	Δ1		
		btain a direction vector for this line of intersection, e.g. $6\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ ate answer $\mathbf{r} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(6\mathbf{i} + 2\mathbf{j} - \mathbf{k})$, or equivalent	Ϋ́Υ.	A1 A1		