MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9709 MATHEMATICS

9709/62

Paper 62, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	62

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	62

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	62

(i) mean = 51	B1	[1]	
(ii) $z = \pm 0.674$	B1		Correct <i>z</i>
$\pm (63-51) / \sigma = 0.674$	M1		Standardising, no cc, no $\sqrt{\sigma}$, no σ^2
$\sigma = 17.8$	A1	[3]	Correct answer
	M1	[2]	
P(total 7) = P(3,4 or 4,3) = $2/16$ P(total 8) = P(4,4) = $1/16$	IVI I		Attempt to find $P(7) + P(8)$
P(7 or more) = 3/16	A1		3/16 seen
	M1		Multiplying their prob by 200
Expected 200 $\times \frac{3}{16} = 37.5$	A1ft	[4]	Correct final answer ft their prob
3 (i) 0. <u>8</u> J			
TJ	M1		Correct shape with T and B first
0.85 0.2 NJ			Contest shape with I and D hist
0.15 0.4 J			
B			
0.6 NJ	A1	[2]	All probs and labels correct
(ii) $P(T \mid NJ) = \frac{P(T \text{ and } NJ)}{P(NJ)}$			
P(NJ)			
$P(T \text{ and } NJ) = 0.85 \times 0.2 = 0.17$	B1		Correct numerator of a fraction with $0 < any$
			denominator < 1
$P(NJ) = 0.85 \times 0.2 + 0.15 \times 0.6 = 0.26$	M1		Summing 2 two-factor products
P(T NJ) = 0.17 / 0.26	A1	r Al	Correct denom
= 17/26 oe ($= 0.654$)	A1	[4]	Correct answer
(a) (i) 24	B1	[1]	Correct final answer
(ii) 3 digit odd $500+=4$ ways	M1		Attempt for 3 digit odd numbers
3 digit odd $600+=3 \times 2=6$ ways	N/1		
4 digit odd 1000+ = 4 ways 4 digit odd 3000+ = 4 ways	M1		Attempt for 4 digit odd numbers
4 digit odd $5000+ = 4$ ways 4 digit odd $5000+ = 4$ ways			
4 digit odd $6000+=6$ ways	M1		For summing their number of ways with 3-digits
OR 4 digit odd, last digit in 3 ways,			and their number of ways with 4-digits
2^{nd} to last in 3 ways, 2^{nd} in 2 ways			
first in 1 way $= 18$			
Total = 28 ways	A1	[4]	Correct total
(b) no of ways 4 and 5 not next to each			
other	M1		
$= 6! - 5! \times 2! = 720 - 240$			Finding ways digits not next to each other
= 480 Prob not next = $480/720 = 2/3$		[2]	240 or 480 seen Correct answer
	Al	[3]	
5 (i) $40 = 120 / 3$ so $r = 3$ P(40) = 3/45 = 1/15 AG	M1	[9]	r = 3 seen or obtained from table
P(40) = 3/45 = 1/15 AG	A1	[2]	Given answer legit obtained
(ii)			9 on 0 walves for a compact to account integra
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1		8 or 9 values for <i>x</i> , correct to nearest integer One correct probability apart from 1/15
P(X=x) 1/45 2/45 3/45 4/45	B1	[3]	Correct table
24 20 17.14 15 13.3		[-]	
24 20 17.14 13 13.5 5/45 6/45 7/45 8/45 9/45			

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	62

(iii) 40/3 ce (13.3) B1ft [1] ft their table (iv) P(18 < X < 100) = (2 + 3 + 4 + 5 + 6)/45 M1 Adding 5 probabilities o.e. 6 (i) class widths 20, 10, 10, 10, 10, 15 freq density: 2.0, 3.4, 5.6, 5.4, 2.9, 1.4 M1 Attempt at fd or scaled frequency 6 (i) class widths 20, 10, 10, 10, 10, 15 freq density: 2.0, 3.4, 5.6, 5.4, 2.9, 1.4 M1 Attempt at fd or scaled frequency 6 (i) class widths 20, 10, 10, 10, 10, 15 freq density: 2.0, 3.4, 5.6, 5.4, 2.9, 1.4 M1 Attempt at fd or scaled frequency 6 (i) class widths 20, 10, 10, 10, 10, 10, 15 freq density: 2.0, 3.4, 5.6, 5.4, 2.9, 1.4 M1 Attempt at fd or scaled frequency 7 (i) mid-points 10.5, 25.5, 35.5, 45.5, 55.5, 68 mean = $\Sigma xf/234 - mean^2$ sd = 16.9 M1 Attempt at $\Sigma xf/234$ using mid-points, NO widths, NOT upper class bounds Correct answer 7 (i) P($X > 128$) = P $\left(z > \frac{128 - 125}{4.2}\right)$ = $P(z > 0.7143)$ = $1 - 0.7623$ = 0.238 M1 Standardising, no cc, no sq rt 7 (i) P($X > k$) = $0.7465 + 0.2377 = 0.9842$ M1 Valid method to obtain P($X > k$), no cc 7 (i) P($X > k$) = $0.7465 + 0.2377 = 0.9842$ M1 Valid method to obtain P($X > k$), no cc <th></th>	
+ 6)/45 = 20/45 (4/9) (0.444)A1[2]Correct answer6(i) class widths 20, 10, 10, 10, 10, 15 freq density: 2.0, 3.4, 5.6, 5.4, 2.9, 1.4M1Attempt at fd or scaled frequencyfdA1B1B1B20.520.5etc60.575.5marksB10.520.5etc60.575.5marksB1B1B1B1B1B10.520.5etc60.575.5marks(ii) mid-points 10.5, 25.5, 35.5, 45.5, 55.5, 68 mean = $\Sigma xf/234 = 8769.5/234$ $= 37.5$ var $= \Sigma x^2/234 - mean^2$ M1Attempt at $\Sigma xf/234$ using mid-points, NO widths, NOT upper class bounds Correct answer7(i) $P(X > 128) = P\left(z > \frac{128 - 125}{4.2}\right)$ $= P(z > 0.7143)$ $= 1 - 0.7623$ M1Standardising, no ec, no sq rt7(i) $P(X > k) = 0.7465 + 0.2377 = 0.9842$ M1Valid method to obtain $P(X > k)$, no ec	
6(i) class widths 20, 10, 10, 10, 10, 15 freq density: 2.0, 3.4, 5.6, 5.4, 2.9, 1.4M1Attempt at fd or scaled frequencyfdA1Correct heights seen on graphfdB1B10.520.5etc60.5T5.50.520.5etc60.575.5(ii) mid-points 10.5, 25.5, 35.5, 45.5, s55.5, 68 mean = $\Sigma xf/234 = 8769.5/234$ 	
fid fid fid fid fid fid fid fid	
fd fd A1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B	
A1Correct heights seen on graphB1B1Bar lines correctly located at 20.5, 30.50.520.5etc60.575.5marks0.520.5etc60.575.5marks(ii) mid-points 10.5, 25.5, 35.5, 45.5, 55.5, 68 mean = $\Sigma xf/234 = 8769.5/234$ = 37.5 var = $\Sigma x^2f/234 - mean^2$ M1Attempt at $\Sigma xf/234$ using mid-points, NO widths, NOT upper class bounds Correct answer7(i) $P(X > 128) = P\left(z > \frac{128 - 125}{4.2}\right)$ = $P(z > 0.7143)$ = 1 - 0.7623 = 0.238M1Standardising, no cc, no sq rt9M1Standardising, no cc, no sq rt9N1Standardising, no cc, no sq rt9N238M110 $P(X > k) = 0.7465 + 0.2377 = 0.9842$ M1Valid method to obtain $P(X > k)$, no cc	
A1Correct heights seen on graphB1B1Bar lines correctly located at 20.5, 30.50.520.5etc60.575.5marks(ii) mid-points 10.5, 25.5, 35.5, 45.5, 55.5, 68 mean = $\Sigma xf/234 = 8769.5/234$ = 37.5 var = $\Sigma x^2f/234 - mean^2$ M1Attempt at $\Sigma xf/234$ using mid-points, NO widths, NOT upper class bounds Correct answer7(i) $P(X > 128) = P\left(z > \frac{128 - 125}{4.2}\right)$ = $P(z > 0.7143)$ = 1 - 0.7623 = 0.238M1Standardising, no cc, no sq rt9M1Standardising, no cc, no sq rt9M1Standardising, no cc, no sq rt9N1Standardising, no cc, no sq rt10 $P(X > k) = 0.7465 + 0.2377 = 0.9842$ M110Valid method to obtain $P(X > k)$, no cc	
B1Bar lines correctly located at 20.5, 30.5 50.5 and 60.5, no gaps0.520.5etc60.575.50.520.5etc60.575.5(ii)mid-points 10.5, 25.5, 35.5, 45.5, 55.5, 68 mean = $\sum xf/234 = 8769.5/234$ 	
50.5 and 60.5, no gaps0.5 20.5etc60.5 75.5 marks(ii) mid-points 10.5, 25.5, 35.5, 45.5, 55.5, 68 mean = $\sum xf/234 = 8769.5/234$ = 37.5 var = $\sum x^2f/234 - mean^2$ sd = 16.97 (i) $P(X > 128) = P\left(z > \frac{128 - 125}{4.2}\right)$ = $P(z > 0.7143)$ = 1 - 0.7623 = 0.2387 (ii) $P(X > k) = 0.7465 + 0.2377 = 0.9842$ M1M1M1M1M1Standardising, no cc, no sq rtCorrect area of graph i.e. prob < 0.5 Correct answer, rounding to 0.238(ii) $P(X > k) = 0.7465 + 0.2377 = 0.9842$ M1Valid method to obtain $P(X > k)$, no cc	
50.5 and 60.5, no gaps0.5 20.5etc60.5 75.5 marks(ii) mid-points 10.5, 25.5, 35.5, 45.5, 55.5, 68 mean = $\sum xf/234 = 8769.5/234$ = 37.5 var = $\sum x^2f/234 - mean^2$ sd = 16.97 (i) $P(X > 128) = P\left(z > \frac{128 - 125}{4.2}\right)$ = $P(z > 0.7143)$ = 1 - 0.7623 = 0.2387 (ii) $P(X > k) = 0.7465 + 0.2377 = 0.9842$ M1M1M1M1M1Standardising, no cc, no sq rtCorrect area of graph i.e. prob < 0.5 Correct answer, rounding to 0.238(ii) $P(X > k) = 0.7465 + 0.2377 = 0.9842$ M1Valid method to obtain $P(X > k)$, no cc	40.5
B1Correct widths of bars0.520.5etc60.575.5marksB1(ii)mid-points 10.5, 25.5, 35.5, 45.5, 55.5, 68 mean = $\Sigma xf/234 = 8769.5/234$ = 37.5 var = $\Sigma x^2 f/234 - mean^2$ M1Attempt at $\Sigma xf/234$ using mid-points, NO' widths, NOT upper class bounds Correct answer7(i) $P(X > 128) = P\left(z > \frac{128 - 125}{4.2}\right)$ = $P(z > 0.7143)$ = 1 - 0.7623 = 0.238M1Standardising, no cc, no sq rt7(i) $P(X > k) = 0.7465 + 0.2377 = 0.9842$ M1Valid method to obtain $P(X > k)$, no cc	, 40.3,
Image: Description of the section	
Image: Line line line line line line line line l	
Image: Description of the section	and 0.5
0.5 20.5etc60.5 75.5 marks [5] (ii) mid-points 10.5, 25.5, 35.5, 45.5, 55.5, 68 M1 Attempt at $\Sigma xf/234$ using mid-points, NO widths, NOT upper class bounds $= 37.5$ $= 37.5$ A1 Correct answer $var = \Sigma x^2 f/234 - mean^2$ M1 Numerical attempt at correct variance for NOT class widths $sd = 16.9$ A1 [4] Correct answer 7 (i) $P(X > 128) = P\left(z > \frac{128 - 125}{4.2}\right)$ M1 Standardising, no cc, no sq rt $= P(z > 0.7143)$ $= 1 - 0.7623$ M1 Correct area of graph i.e. prob < 0.5	
55.5, 68 mean = $\Sigma xf/234 = 8769.5/234$ = 37.5 var = $\Sigma x^2 f/234 - \text{mean}^2$ M1Attempt at $\Sigma xf/234$ using mid-points, NO widths, NOT upper class bounds Correct answervar = $\Sigma x^2 f/234 - \text{mean}^2$ A1M1Numerical attempt at correct variance for NOT class widthssd = 16.9A1[4]Correct answer7(i) $P(X > 128) = P\left(z > \frac{128 - 125}{4.2}\right)$ M1Standardising, no cc, no sq rt= $P(z > 0.7143)$ = $1 - 0.7623$ = 0.238 M1Correct area of graph i.e. prob < 0.5 Correct answer, rounding to 0.238(ii) $P(X > k) = 0.7465 + 0.2377 = 0.9842$ M1Valid method to obtain $P(X > k)$, no cc	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$= 37.5$ $var = \sum x^{2}f/234 - mean^{2}$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$	Γ class
var = $\Sigma x^2 f / 234 - \text{mean}^2$ M1Numerical attempt at correct variance for NOT class widthssd = 16.9A1[4]Correct answer7 (i) $P(X > 128) = P\left(z > \frac{128 - 125}{4.2}\right)$ M1Standardising, no cc, no sq rt= $P(z > 0.7143)$ M1Correct area of graph i.e. prob < 0.5	
sd = 16.9 A1 [4] NOT class widths Correct answer 7 (i) $P(X > 128) = P\left(z > \frac{128 - 125}{4.2}\right)$ M1 Standardising, no cc, no sq rt = $P(z > 0.7143)$ M1 Correct area of graph i.e. prob < 0.5	ormula,
7 (i) $P(X > 128) = P\left(z > \frac{128 - 125}{4.2}\right)$ M1 Standardising, no cc, no sq rt $= P(z > 0.7143)$ $= 1 - 0.7623$ M1 Correct area of graph i.e. prob < 0.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
= 1 - 0.7623 M1 Correct area of graph i.e. prob < 0.5	
= 0.238 A1 [3] Correct answer, rounding to 0.238 (ii) $P(X > k) = 0.7465 + 0.2377 = 0.9842$ M1 Valid method to obtain $P(X > k)$, no cc	
(ii) $P(X > k) = 0.7465 + 0.2377 = 0.9842$ M1 Valid method to obtain $P(X > k)$, no cc	
$-2.15 = \frac{k - 125}{42}$ M1 Solving equation with their z-value, k, 12	25 and
4.2 $4.2 \text{ or } \sqrt{4.2}$, no cc	
k = 116 A1 [4] Correct answer, rounding to 116	
(iii) $P(X > 2) = P(3, 4, 5) \text{ or } 1 - P(0, 1, 2)$ M1	
$= {}^{5}C_{3}(0.2377)^{3}(0.7623)^{2}$	
$+ {}^{5}C_{4}(0.2377)^{4}(0.7623)^{1}$	0
+ ${}^{5}C_{5}(0.2377)^{5}$ M1 Binomial term of form ${}^{5}C_{x}p^{x}(1-p)^{5-x}, x \neq 0$	0
= 0.07804 + 0.01216 + 0.0007588 A1 Sum of exactly 3 bin probs, any p	
= 0.0910 A1 [4] Correct unsimplified answer	fram
Correct answer accept 0.0909 and 0.091 0.0910	