UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9709 MATHEMATICS

9709/31

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9709	31

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9709	31

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only - often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

		GCE A/AS LEVEL – October/November 2010	9709	31	
1	FITHER:	State or imply non-modular inequality $(2(x-3))^2 > (3x+1)^2$, o	r corresponding		
•	LITTLK.	quadratic equation, or pair of linear equations $2(x-3) = \pm (3x + 1)$, where $3x + 1$ distribution of linear equations $3x + 1$ distribution $3x + 1$ dis	1)	B1	
		equations	e two midai	M1	
		Obtain critical values $x = -7$ and $x = 1$		A1	
		State answer $-7 < x < 1$		A1	
	OR:	Obtain critical value $x = -7$ or $x = 1$ from a graphical method, or	or by inspection,	D.1	
		or by solving a linear equation or inequality		B1 B2	
		Obtain critical values $x = -7$ and $x = 1$ State answer $-7 < x < 1$		B2 B1	[4]
		[Do not condone: $<$ for $<$.]		ы	[ד]
2	Use law fo	or the logarithm of a power, a quotient, or a product correctly at l	least once	M1	
		$= 1 \text{ or } e = \exp(1)$		M1	
		correct equation free of logarithms, e.g. $1 + x^2 = ex^2$		A1	
	Solve and	obtain answer $x = 0.763$ only		A1	[4]
		polution $x = 0.763$ with no relevant working give B1, and a further	r B1 if 0.763 is		
		be the only root.]	.41		
		use of logarithms to base 10 with answer 0.333 only, as a misrea w iteration, giving B1 for an appropriate formula,	iu.]		
		exp($(\ln(1 + x_n^2) - 1)/2$), M1 for using it correctly once, A1 for 0	.763, and A1 for		
		he equation has no other root but 0.763.]	.,,		
3		se of $cos(A + B)$ formula to obtain an equation in $cos \theta$ and $sin \theta$)	M1	
		ormula to obtain an equation in tan θ (or cos θ , sin θ or cot θ)		M1	
		$\theta = 1/(4 + \sqrt{3})$ or equivalent (or find $\cos \theta$, $\sin \theta$ or $\cot \theta$)		A1	
		swer $\theta = 9.9^{\circ}$		A1	
		= 189.9°, and no others in the given interval		A1	[5]
		nswers outside the given interval. Treat answers in radians as a m	isread		
	(0.173, 3.3) [The other	r solution methods are <i>via</i> cos $\theta = \pm (4 + \sqrt{3}) / \sqrt{1 + (4 + \sqrt{3})^2}$ o	or		
	$\sin \theta = \pm 1$	$\sqrt{\left(1+\left(4+\sqrt{3}\right)^2\right)}$.]			
4		e recognisable sketch of a relevant graph over the given range		B1	507
	Sketo	ch the other relevant graph on the same diagram and justify the g	iven statement	B1	[2]
	(ii) Cons	ider sign of $4x^2 - 1 - \cot x$ at $x = 0.6$ and $x = 1$, or equivalent		M1	
		plete the argument correctly with correct calculated values		A 1	[2]

Mark Scheme: Teachers' version

Syllabus

Paper

M1

A1

A1

[3]

Page 4

Show sufficient iterations to at least 4 d.p. to justify its accuracy to 2 d.p., or show

(iii) Use the iterative formula correctly at least once

there is a sign change in the interval (0.725, 0.735)

Obtain final answer 0.73

	•		GCE A/AS LEVEL – October/November 2010 9709	31	
_			dx		
5	(i)	State or in	inply $dx = 2 \cos \theta d\theta$, or $\frac{dx}{d\theta} = 2 \cos \theta$, or equivalent	B1	
			for x and dx throughout the integral	M1	
			e given answer correctly, having changed limits and shown sufficient	A 1	[2]
		working		A1	[3]
	(ii)	Replace in	ategrand by $2-2\cos 2\theta$, or equivalent	B1	
	()	•	egral $2\theta - \sin 2\theta$, or equivalent	B1√	
			limits correctly in an integral of the form $a\theta \pm b \sin 2\theta$, where $ab \triangleright 0$	M1	
		Obtain ans	swer $\frac{1}{3}\pi - \frac{\sqrt{3}}{2}$ or exact equivalent	A1	[4]
			s on integrands of the form $a + c \cos 2\theta$, where $ac \triangleright 0$.]		
6	(i)	State mod	ulus is 2	B1	
v	(1)		ment is $\frac{1}{6}\pi$, or 30°, or 0.524 radians	B1	[2]
	(ii)	(a) State	answer $3\sqrt{3} + i$	B1	
		(b) <i>EITH</i>	<i>TER</i> : Multiply numerator and denominator by $\sqrt{3} - i$, or equivalent	M1	
			Simplify denominator to 4 or numerator to $2\sqrt{3} + 2i$	A1	
			Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent	A1	
		OR 1		M1	
			Obtain $x = \frac{1}{2}\sqrt{3}$ or $y = \frac{1}{2}$	A1	
			Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent	A1	
		OR 2		M1	
			Obtain $x = \frac{1}{2}\sqrt{3}$ or $y = \frac{1}{2}$	A1	
			Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent	A1	[4]
	(iii)	Plot A and	B in relatively correct positions	B1	
			Use fact that angle $AOB = \arg(iz^*) - \arg z$ Obtain the given answer	M1 A1	
		OR 1:	Obtain the given answer Obtain tan \hat{AOB} from gradients of OA and OB and the correct $tan(A - B)$	Al	
			formula	M1	
			Obtain the given answer	A1	

Mark Scheme: Teachers' version

Page 5

OR 2:

Obtain the given answer

Paper

M1

A1

[3]

Syllabus

Obtain $\cos A\hat{O}B$ by using correct cosine formula or scalar product

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9709	31
		•	

- 7 (i) State correct equation in any form, e.g. $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} + 2\mathbf{j} 2\mathbf{k})$ B1 [1]
 - (ii) EITHER: Equate a relevant scalar product to zero and form an equation in λ M1

 OR 1: Equate derivative of OP^2 (or OP) to zero and form an equation in λ M1

 OR 2: Use Pythagoras in OAP or OBP and form an equation in λ M1

 State a correct equation in any form A1

 Solve and obtain $\lambda = -\frac{1}{6}$ or equivalent A1
 - Obtain final answer $\overrightarrow{OP} = \frac{2}{3}\mathbf{i} + \frac{5}{3}\mathbf{j} + \frac{7}{3}\mathbf{k}$, or equivalent A1 [4]
 - (iii) EITHER: State or imply \overrightarrow{OP} is a normal to the required plane State normal vector $2\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}$, or equivalent Substitute coordinates of a relevant point in 2x + 5y + 7z = d and evaluate d Obtain answer 2x + 5y + 7z = 26, or equivalent A1 OR 1: Find a vector normal to plane AOB and calculate its vector product with a
 - OR 1: Find a vector normal to plane AOB and calculate its vector product with a direction vector for the line AB M1*

 Obtain answer $2\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}$, or equivalent A1

 Substitute coordinates of a relevant point in 2x + 5y + 7z = d and evaluate d M1(dep*)

 Obtain answer 2x + 5y + 7z = 26, or equivalent A1
 - OR 2: Set up and solve simultaneous equations in a, b, c derived from zero scalar products of $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ with (i) a direction vector for line AB, (ii) a normal to plane OAB M1*

 Obtain a:b:c=2:5:7, or equivalent A1

 Substitute coordinates of a relevant point in 2x + 5y + 7z = d and evaluate d M1(dep*)

 Obtain answer 2x + 5y + 7z = 26, or equivalent A1
 - OR 3: With Q(x, y, z) on plane, use Pythagoras in OPQ to form an equation in x, y and z M1*

 Form a correct equation A1 $\sqrt{}$ Reduce to linear form M1(dep*)

 Obtain answer 2x + 5y + 7z = 26, or equivalent A1
 - Obtain answer 2x + 5y + 7z = 26, or equivalent

 OR 4: Find a vector normal to plane AOB and form a 2-parameter equation with relevant vectors, e.g., $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} 2\mathbf{j} + 2\mathbf{k}) + \mu(8\mathbf{i} 6\mathbf{j} + 2\mathbf{k})$ State three correct equations in x, y, z, λ and μ Eliminate λ and μ Obtain answer 2x + 5y + 7z = 26, or equivalent

 A1

 [4]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9709	31

(i) State or imply the form $\frac{A}{1+x} + \frac{Bx+C}{1+2x^2}$ 8 B1

Use any relevant method to evaluate a constant M1Obtain one of A = -1, B = 2, C = 1**A**1

Obtain a second value A1 Obtain the third value **A**1

[5]

[5]

A1

A1

[5]

(ii) Use correct method to obtain the first two terms of the expansion of $(1+x)^{-1}$ or

 $(1+2x^2)^{-1}$ M1 $A1\sqrt{+}A1\sqrt{-}$ Obtain correct expansion of each partial fraction as far as necessary Multiply out fully by Bx + C, where $BC \triangleright 0$ M1Obtain answer $3x - 3x^2 - 3x^3$

[Symbolic binomial coefficients, e.g., $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ are not sufficient for the first M1. The f.t.

is on *A*, *B*, *C*.]

If B or C omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt{A1}$ in (ii), max 4/10.]

[If a constant D is added to the correct form, give M1A1A1A1 and B1 if and only if D=0 is stated.

[If an extra term $D/(1+2x^2)$ is added, give B1M1A1A1, and A1 if C+D=1 is resolved to $1/(1 + 2x^2)$.

[In the case of an attempt to expand $3x(1+x)^{-1}(1+2x^2)^{-1}$, give M1A1A1 for the expansions up to the term in x^2 , M1 for multiplying out fully, and A1 for the final answer.]

Obtain y = -1/(3e), or any ln-free equivalent

[For the identity $3x \equiv (1 + x + 2x^2 + 2x^3)(a + bx + cx^2 + dx^3)$ give M1A1; then M1A1 for using a relevant method to find two of a = 0, b = 3, c = -3 and d = -3; and then A1 for the final answer in series form.]

- 9 M1 (i) Use correct product rule Obtain correct derivative in any form A₁ Equate derivative to zero and find non-zero x M1Obtain $x = \exp(-\frac{1}{3})$, or equivalent **A**1
 - (ii) Integrate and reach $kx^4 \ln x + l \int x^4 \cdot \frac{1}{x} dx$ M1

Obtain $\frac{1}{4}x^4 \ln x - \frac{1}{4} \int x^3 dx$ **A**1

Obtain integral $\frac{1}{4}x^4 \ln x - \frac{1}{16}x^4$, or equivalent **A**1

Use limits x = 1 and x = 2 correctly, having integrated twice M1

Obtain answer $4 \ln 2 - \frac{15}{16}$, or exact equivalent **A**1 [5]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9709	31

- 10 (i) State or imply $\frac{dx}{dt} = k(20 x)$ B1

 Show that k = 0.05
 - (ii) Separate variables correctly and integrate both sides
 Obtain term $-\ln(20-x)$, or equivalent
 Obtain term $\frac{1}{20}t$, or equivalent
 B1
 Evaluate a constant or use limits t=0, x=0 in a solution containing terms $a \ln(20-x)$ and btObtain correct answer in any form, e.g. $\ln 20 \ln(20-x) = \frac{1}{20}t$ A1 [5]
 - (iii) Substitute t = 10 and calculate x M1(dep*) Obtain answer x = 7.9 A1 [2]
 - (iv) State that x approaches 20 B1 [1]