MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9709 MATHEMATICS

9709/32

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9709	32

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9709	32

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Schen	ne: Teachers' version	Syllabus	Paper	•
	GCE A/AS LEVEL	. – October/November 2010	9709	32	
EITHED.	State on imply non-module	t inequality $(2(x-3))^2 > (3x+1)^2$, or	n aamaan an din a		
EITHER:		of linear equations $2(x-3) \ge (3x+1)$, of		B1	
		ttempt at a 3-term quadratic, or solv		DI	
	equations	thempt at a 3-term quadratic, of solv	e two inical	M1	
		7 and y = 1		A1	
	Obtain critical values $x = -$	/ and $x = 1$			
OD	State answer $-7 < x < 1$			A1	
OR:		or $x = 1$ from a graphical method, or	or by inspection,	D 1	
	or by solving a linear equat	· ·		B1	
	Obtain critical values $x = -$	/ and $x = 1$		B2	-
	State answer $-7 < x < 1$			B1	[4
	Do not condone: < for <.]				
Use law fo	the logarithm of a power,	a quotient, or a product correctly at	least once	M1	
	or $e = exp(1)$			M1	
Obtain a c	rect equation free of logar	ithms, e.g. $1 + x^2 = ex^2$		A1	
Solve and	btain answer $x = 0.763$ only	y		A1	[4
[For the so	ution $x = 0.763$ with no rele	evant working give B1, and a furthe	r B1 if 0.763 is		-
shown to l	the only root.]				
[Treat the	se of logarithms to base 10	with answer 0.333 only, as a misre	ad.]		
-	iteration, giving B1 for an	•	-		
-		for using it correctly once A1 for 0	762 and Al for		

e.g. $x_{n+1} = \exp((\ln(1 + x_n^2) - 1)/2)$, M1 for using it correctly once, A1 for 0.763, and A1 for showing the equation has no other root but 0.763.]

3Attempt use of $\cos(A + B)$ formula to obtain an equation in $\cos \theta$ and $\sin \theta$ M1Use trig formula to obtain an equation in tan θ (or $\cos \theta$, $\sin \theta$ or $\cot \theta$)M1Obtain tan $\theta = 1/(4 + \sqrt{3})$ or equivalent (or find $\cos \theta$, $\sin \theta$ or $\cot \theta$)A1Obtain answer $\theta = 9.9^{\circ}$ A1Obtain $\theta = 189.9^{\circ}$, and no others in the given intervalA1[Ignore answers outside the given interval. Treat answers in radians as a misread(0.173, 3.31).]

[The other solution methods are via cos $\theta = \pm (4 + \sqrt{3}) / \sqrt{\left(1 + \left(4 + \sqrt{3}\right)^2\right)}$ or

$$\sin \theta = \pm 1/\sqrt{\left(1 + \left(4 + \sqrt{3}\right)^2\right)}.$$

4	(i)	Make recognisable sketch of a relevant graph over the given range Sketch the other relevant graph on the same diagram and justify the given statement	B1 B1	[2]
	(ii)	Consider sign of $4x^2 - 1 - \cot x$ at $x = 0.6$ and $x = 1$, or equivalent Complete the argument correctly with correct calculated values	M1 A1	[2]
	(iii)	Use the iterative formula correctly at least once Obtain final answer 0.73 Show sufficient iterations to at least 4 d.p. to justify its accuracy to 2 d.p., or show	M1 A1	
		there is a sign change in the interval (0.725, 0.735)	A1	[3]

	Pa	ge 5	Mark Scheme: Teachers' version	Syllabus	Paper	•
			GCE A/AS LEVEL – October/November 2010	9709	32	
5	(i)	State or	imply $dx = 2 \cos \theta d\theta$, or $\frac{dx}{d\theta} = 2 \cos \theta$, or equivalent		B1	
		Substitu Obtain t	te for x and dx throughout the integral he given answer correctly, having changed limits and shown s	sufficient	M1	[2]
		working			A1	[3]
	(ii)	-	integrand by $2 - 2 \cos 2\theta$, or equivalent		B1	
			ntegral $2\theta - \sin 2\theta$, or equivalent		B1√	
			te limits correctly in an integral of the form $a\theta \pm b \sin 2\theta$, whe	ere <i>ab</i> j ⁵ 0	M1	
		Obtain a	inswer $\frac{1}{3}\pi - \frac{\sqrt{3}}{2}$ or exact equivalent		A1	[4]
		[The f.t.	is on integrands of the form $a + c \cos 2\theta$, where $ac \triangleright 0$.]			
6	(i)	State mo	odulus is 2		B1	
		State arg	gument is $\frac{1}{6}\pi$, or 30°, or 0.524 radians		B1	[2]
	(ii)	(a) Stat	te answer $3\sqrt{3} + i$		B1	
		(b) <i>EI</i> 7	<i>THER</i> : Multiply numerator and denominator by $\sqrt{3} - i$, or equ	ivalent	M1	
			Simplify denominator to 4 or numerator to $2\sqrt{3} + 2i$		A1	
			Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent		A1	
		OR	1: Obtain two equations in x and y and solve for x or for y		M1	
			Obtain $x = \frac{1}{2}\sqrt{3}$ or $y = \frac{1}{2}$		A1	
			Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent		A1	
		OR			M1	
			Obtain $x = \frac{1}{2}\sqrt{3}$ or $y = \frac{1}{2}$		A1	
			Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent		A1	[4]
	(iii)		nd B in relatively correct positions		B1	
		EITHER	2: Use fact that angle $AOB = \arg(iz^*) - \arg z$ Obtain the given answer		M1 A1	
		OR 1:	Obtain the given answer Obtain tan \hat{AOB} from gradients of OA and OB and the cor	rect $tan(A - R)$	AI	
		UN 1.	formula	$1001 \tan(A - D)$	M1	
			Obtain the given answer		A1	
		<i>OR 2</i> :	Obtain cos \hat{AOB} by using correct cosine formula or scalar	product	M1	
			Obtain the given answer		A1	[3]

Page 6				Paper	•
		GCE A/AS LEVEL – October/November 2010 9709		32	
(i)	State correct equation in any form, e.g. $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} + 2\mathbf{j} - 2\mathbf{k})$		B1	[1]	
(ii)	EITHER:	Equate a relevant scalar product to zero and form an equation in λ		M1	
	OR 1:	Equate derivative of OP^2 (or OP) to zero and form an equation in λ		M1	
	OR 2:	Use Pythagoras in <i>OAP</i> or <i>OBP</i> and form an equation in λ		M1	
		rrect equation in any form		A1	
	Solve and	l obtain $\lambda = -\frac{1}{6}$ or equivalent		A1	
	Obtain fir	hal answer $\overrightarrow{OP} = \frac{2}{3}\mathbf{i} + \frac{5}{3}\mathbf{j} + \frac{7}{3}\mathbf{k}$, or equivalent		A1	[4]
(iii)	EITHER:	State or imply \overrightarrow{OP} is a normal to the required plane		M1	
()		State normal vector $2\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}$, or equivalent		A1√	
		Substitute coordinates of a relevant point in $2x + 5y + 7z = d$ and eva	luate d	M1	
		Obtain answer $2x + 5y + 7z = 26$, or equivalent		A1	
	OR 1:	Find a vector normal to plane AOB and calculate its vector product v	vith a		
		direction vector for the line <i>AB</i>		M1*	
		Obtain answer $2\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}$, or equivalent	1 . 1	A1	k \
		Substitute coordinates of a relevant point in $2x + 5y + 7z = d$ and evaluate other and evaluate of the substitute of t	iluate d	M1(dep*	*)
	OR 2:	Obtain answer $2x + 5y + 7z = 26$, or equivalent Set up and solve simultaneous equations in <i>a</i> , <i>b</i> , <i>c</i> derived from zero		A1	
		products of $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ with (i) a direction vector for line AB, (ii) a to plane OAB	normai	M1*	
		Obtain $a:b:c=2:5:7$, or equivalent		Al	
		Substitute coordinates of a relevant point in $2x + 5y + 7z = d$ and eva	luate d	M1(dep [*]	*)
		Obtain answer $2x + 5y + 7z = 26$, or equivalent		A1)
	OR 3:	With $Q(x, y, z)$ on plane, use Pythagoras in OPQ to form an equatio	n in x,		
		y and z		M1*	
		Form a correct equation		A1√	
		Reduce to linear form	Ν	/11(dep*)	
		Obtain answer $2x + 5y + 7z = 26$, or equivalent	•.1	A1	
	OR 4:	Find a vector normal to plane AOB and form a 2-parameter equation		1 1 1 4	
		relevant vectors, e.g., $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) + \mu(8\mathbf{i} - 6\mathbf{j} + 2\mathbf{k})$	2 K)	M1*	
		State three correct equations in <i>x</i> , <i>y</i> , <i>z</i> , λ and μ	r	A1	
		Eliminate λ and μ Obtain answer $2x + 5y + 7z = 26$, or equivalent	N	/11(dep*)	۲ <i>۸</i> ٦
		Obtain answer $2x + 3y + 72 - 20$, of equivalent		A1	[4]

	Page 7		Mark Scheme: Teachers' version	Syllabus	Paper	ſ
			GCE A/AS LEVEL – October/November 2010	9709	32	
8	(i)	Use any r Obtain on Obtain a s	nply the form $\frac{A}{1+x} + \frac{Bx+C}{1+2x^2}$ elevant method to evaluate a constant e of $A = -1$, $B = 2$, $C = 1$ second value e third value		B1 M1 A1 A1 A1	[5]
	(ii)	$(1+2x^2)^{-1}$ Obtain co Multiply o Obtain an [Symbolic is on <i>A</i> , <i>B</i> [If <i>B</i> or <i>C</i> in (ii), ma [If a const D=0 is s [If an extr resolved t [In the case expansion answer.] [For the ic for using	rrect expansion of each partial fraction as far as necessary but fully by $Bx + C$, where $BC \ge 0$ swer $3x - 3x^2 - 3x^3$ c binomial coefficients, e.g., $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ are not sufficient for the , <i>C</i> .] omitted from the form of fractions, give B0M1A0A0A0 in x 4/10.] cant <i>D</i> is added to the correct form, give M1A1A1A1 and B	A first M1. The f.t. (i); M1A1 $\sqrt{A1}\sqrt{1}$ 1 if and only if + $D = 1$ is A1 for the for the final A1; then M1A1	$M1$ $1\sqrt{+} A1\sqrt{-}$ M1 A1	[5]
9	(i)	Obtain co Equate de Obtain <i>x</i>	ct product rule rrect derivative in any form rivative to zero and find non-zero x = $\exp(-\frac{1}{3})$, or equivalent = $-1/(3e)$, or any ln-free equivalent		M1 A1 M1 A1 A1	[5]
	(ii)		and reach $kx^4 \ln x + l \int x^4 \cdot \frac{1}{x} dx$ $x^4 \ln x - \frac{1}{4} \int x^3 dx$		M1 A1	
			the regrat $\frac{1}{4}x^4 \ln x - \frac{1}{16}x^4$, or equivalent			
			x = 1 and $x = 2$ correctly, having integrated twice		A1 M1	
			swer $4 \ln 2 - \frac{15}{16}$, or exact equivalent		A1	[5]

	Page 8		Mark Scheme: Teachers' version	Syllabus	Paper	•
			GCE A/AS LEVEL – October/November 2010	9709	32	
10		State or ir Show that	nply $\frac{\mathrm{d}x}{\mathrm{d}t} = k(20 - x)$ k = 0.05		B1 B1	[2]
		Obtain ter Obtain ter	variables correctly and integrate both sides rm $-\ln(20 - x)$, or equivalent rm $\frac{1}{20}t$, or equivalent a constant or use limits $t = 0$, $x = 0$ in a solution containing t	erms $a \ln(20 - r)$	B1 B1 B1	
		and <i>bt</i>	rrect answer in any form, e.g. $\ln 20 - \ln(20 - x) = \frac{1}{20}t$		M1* A1	[5]
	· /		t = 10 and calculate x swer $x = 7.9$:	M1(dep*) A1	[2]
	(iv)	State that	x approaches 20		B1	[1]