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1 Solve the inequality 2|x − 3 | > |3x + 1|. [4]

2 Solve the equation

ln(1 + x2) = 1 + 2 ln x,

giving your answer correct to 3 significant figures. [4]

3 Solve the equation

cos(θ + 60◦) = 2 sin θ,

giving all solutions in the interval 0◦ ≤ θ ≤ 360◦. [5]

4 (i) By sketching suitable graphs, show that the equation

4x2 − 1 = cot x

has only one root in the interval 0 < x < 1
2
π. [2]

(ii) Verify by calculation that this root lies between 0.6 and 1. [2]

(iii) Use the iterative formula

x
n+1

= 1
2

√(1 + cot x
n
)

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal

places. [3]

5 Let I = ä 1

0

x2√(4 − x2) dx.

(i) Using the substitution x = 2 sin θ, show that

I = ã 1
6
π

0

4 sin2
θ dθ. [3]

(ii) Hence find the exact value of I. [4]
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6 The complex number ß is given by

ß = (√3) + i.

(i) Find the modulus and argument of ß. [2]

(ii) The complex conjugate of ß is denoted by ß*. Showing your working, express in the form x + iy,

where x and y are real,

(a) 2ß + ß*,

(b)
iß*

ß .

[4]

(iii) On a sketch of an Argand diagram with origin O, show the points A and B representing the

complex numbers ß and iß* respectively. Prove that angle AOB = 1
6
π. [3]

7 With respect to the origin O, the points A and B have position vectors given by
−−→
OA = i + 2j + 2k and−−→

OB = 3i + 4j. The point P lies on the line AB and OP is perpendicular to AB.

(i) Find a vector equation for the line AB. [1]

(ii) Find the position vector of P. [4]

(iii) Find the equation of the plane which contains AB and which is perpendicular to the plane OAB,

giving your answer in the form ax + by + cß = d. [4]

8 Let f(x) = 3x

(1 + x)(1 + 2x2) .

(i) Express f(x) in partial fractions. [5]

(ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x3.

[5]

[Questions 9 and 10 are printed on the next page.]
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The diagram shows the curve y = x3 ln x and its minimum point M.

(i) Find the exact coordinates of M. [5]

(ii) Find the exact area of the shaded region bounded by the curve, the x-axis and the line x = 2. [5]

10 A certain substance is formed in a chemical reaction. The mass of substance formed t seconds after

the start of the reaction is x grams. At any time the rate of formation of the substance is proportional

to (20 − x). When t = 0, x = 0 and
dx

dt
= 1.

(i) Show that x and t satisfy the differential equation

dx

dt
= 0.05(20 − x). [2]

(ii) Find, in any form, the solution of this differential equation. [5]

(iii) Find x when t = 10, giving your answer correct to 1 decimal place. [2]

(iv) State what happens to the value of x as t becomes very large. [1]
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