Cambridge International Advanced Level

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/33

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	33

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.

When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	33

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓^A" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Ρ	age 4		Mark Scheme	Syllabus	Pape	ər
			ambridge International A Level – October/November 2014	9709	33	
1	<u>Eith</u>		ate or imply non-modular inequality $(3x-1)^2 < (2x+5)^2$ or correspond	ling		
		qu	adratic equation or pair of linear equations $3x - 1 = \pm(2x + 5)$		B1	
			lve a three-term quadratic or two linear equations $5x^2 - 26x - 24 < 0$		M1	
		Oł	tain $-\frac{4}{5}$ and 6		A1	
		Sta	ate $-\frac{4}{5} < x < 6$		A1	
	<u>Or</u>	Oł	otain value 6 from graph, inspection or solving linear equation		B1	
		Oł	tain value $-\frac{4}{5}$ similarly		B2	
		Sta	ate $-\frac{4}{5} < x < 6$		B1	[4]
2	Use	correct	product rule or correct chain rule to differentiate y		M1	
	Use	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}}$			M*1	
	Obta	$\frac{-4c}{-4c}$	$\frac{\cos\theta\sin^2\theta + 2\cos^3\theta}{\sec^2\theta} \text{ or equivalent}$		A1	
	Expi	ress $\frac{\mathrm{d}y}{\mathrm{d}x}$	in terms of $\cos\theta$	E	DM*1	
	Con	firm giv	en answer $6\cos^5\theta - 4\cos^3\theta$ legitimately		A1	[5]
3	(i)	Either	Equate $p(-1)$ or $p(-2)$ to zero or divide by $(x+1)$ or $(x+2)$ and equate constant remainder to zero.		M*1	
			Obtain two equations $a - b = 6$ and $4a - 2b = 34$ or equivalents		A1	
			Solve pair of equations for <i>a</i> or <i>b</i> Obtain $a = 11$ and $b = 5$	Γ	OM*1 A1	
			Obtain $u = 11$ and $v = 5$		AI	
		<u>Or</u>	State or imply third factor is $4x - 1$		B1	
			Carry out complete expansion of $(x+1)(x+2)(4x-1)$ or $(x+1)(x+2)(Cx+D)$		M1	
			Obtain $a = 11$		A1	
			Obtain $b = 5$		A1	[4]
	(ii)		vision or equivalent and obtaining linear remainder		M1	
			quotient $4x + a$, following their value of a e remainder $x - 13$		A1√ [*]	[2]
		mulcal	z = 1 that $z = 1.5$		A1	[3]

Pa	age {	5	Mark Scheme	Syllabus	Pape	er
		C	ambridge International A Level – October/November 2014	9709	33	
4	(i)	Either	Use $\cos(A \pm B)$ correctly at least once		M1	
	()		State correct complete expansion		A1	
			Confirm given answer $\cos\theta$ with explicit use of $\cos 60^\circ = \frac{1}{2}$		A1	
			SR: "correct" answer from sign errors in both expansions is B1 only			
		<u>Or</u>	Use correct $\cos A + \cos B$ formula		M1	
			State correct result e.g. $2\cos\left(\frac{2\theta}{2}\right)\cos\left(\frac{-120}{2}\right)$		A1	
			Confirm given answer $\cos\theta$ with explicit use $\operatorname{of}\cos(\pm 60^{\circ}) = \frac{1}{2}$		A1	[3]
	(ii)	State o	r imply $\frac{\cos 2x}{\cos x} = 3$		B1	
			equation $2\cos^2 x - 3\cos x - 1 = 0$		B1	
			a three-term quadratic equation for $\cos x$		M1	
		Obtain	$\frac{1}{4}(3-\sqrt{17})$ or exact equivalent and, finally, no other		A1	[4]
5	(i)	State o	r imply $iw = -3 + 5i$		B1	
			but multiplication by $\frac{4-i}{4-i}$		M1	
			final answer $-\frac{7}{17} + \frac{23}{17}i$ or equivalent		A1	[3]
	(ii)	Multip	ly w by z to obtain $17 + 17i$		B1	
		State a	$\arg w = \tan^{-1} \frac{3}{5}$ or $\arg z = \tan^{-1} \frac{1}{4}$		B1	
		State a	rg wz = arg w + arg z		M1	
		Confir	m given result $\tan^{-1}\frac{3}{5} + \tan^{-1}\frac{1}{4} = \frac{1}{4}\pi$ legitimately		A1	[4]
6	(i)	State o	r imply correct ordinates 1, 0.94259, 0.79719, 0.62000		B1	
			rrect formula or equivalent with $h = 0.1$ and four y values		M1	[2]
		Obtain	0.255 with no errors seen		A1	[3]
	(ii)		or imply $a = -6$		B1	
			x^4 term including correct attempt at coefficient or imply $b = 27$		M1 A1	
		Either	Integrate to obtain $x - 2x^3 + \frac{27}{5}x^5$, following their values of <i>a</i> and <i>b</i>		B1√^	
			5 Obtain 0.259		B1	
		<u>Or</u>	Use correct trapezium rule with at least 3 ordinates		M1	
			Obtain 0.259 (from 4)		A1	[5]

Ρ	age 6		Syllabus	Pape	
		Cambridge International A Level – October/November 2014	9709	33	
7	(i)	State at least two of the equations $1 + \lambda = a + \mu$, $4 = 2 + 2\mu$, $-2 + 3\lambda = -2 + 3$	au	B1	
	(1)	Solve for λ or for μ	αµ	M1	
		Obtain $\lambda = a$ (or $\lambda = a + \mu - 1$) and $\mu = 1$		A1	
		Confirm values satisfy third equation		A1	[4]
	<i>(</i> !)			D1	
	(ii)	State or imply point of intersection is $(a + 1, 4, 3a - 2)$	wing their	B1	
		Use correct method for the modulus of the position vector and equate to 9, follo point of intersection	owing their	M*1	
		Solve a three-term quadratic equation in a $(a^2 - a - 6 = 0)$	Ι	DM*1	
		Obtain –2 and 3		A1	[4]
8	(i)	Sensibly separate variables and attempt integration of at least one side		M1	
U	(1)	Obtain $2y^{\frac{1}{2}} =$ or equivalent		A1	
				711	
		Correct integration by parts of $x \sin \frac{1}{3}x$ as far as $ax \cos \frac{1}{3}x \pm \int b \cos \frac{1}{3}x dx$		M1	
		Obtain $-3x\cos\frac{1}{3}x + \int 3\cos\frac{1}{3}x dx$ or equivalent		A1	
		$\frac{1}{3}$ $\frac{1}$		AI	
		Obtain $-3x\cos\frac{1}{3}x + 9\sin\frac{1}{3}x$ or equivalent		A1	
		Obtain $y = \left(-\frac{3}{10}x\cos\frac{1}{3}x + \frac{9}{10}\sin\frac{1}{3}x + c\right)^2$ or equivalent		A1	[6]
	(ii)	Use $x = 0$ and $y = 100$ to find constant		M*1	
		Substitute 25 and calculate value of <i>y</i>	Ι	DM*1	
		Obtain 203		A1	[3]
9	(i)	Sketch increasing curve with correct curvature passing through origin, for $x \ge 0$)	B1	
		Recognisable sketch of $y = 40 - x^3$, with equation stated, for $x > 0$		B1	
		Indicate in some way the one intersection, dependent on both curves being roug	ghly		
		correct and both existing for some $x < 0$		B1	[3]
		Consider signs of $x^3 + \ln(x+1) - 40$ at 3 and 4 or equivalent or compare values	. of		
	(ii)	relevant expressions for $x = 3$ and $x = 4$	5 01	M1	
		Complete argument correctly with correct calculations (-11.6 and 25.6)		A1	[2]
	(iii)	Use the iterative formula correctly at least once Obtain final answer 3.377		M1 A1	
		Show sufficient iterations to justify accuracy to 3 d.p. or show sign change in ir	nterval	AI	
		(3.3765, 3.3775)		A1	[3]
	(iv)	Attempt value of $\ln(x+1)$		M1	
	(iv)	Obtain 1.48		A1	[2]
		00mm 1.10		111	L≁J

Page 7	e 7 Mark Scheme		Pape	er
	Cambridge International A Level – October/November 2014	9709	33	
O State o	or imply $\frac{du}{dx} = e^x$		B1	
	tute throughout for x and dx		M1	
Obtain	$\int \frac{u}{u^2 + 3u + 2} \mathrm{d}u \text{or equivalent (ignoring limits so far)}$		A1	
State o	or imply partial fractions of form $\frac{A}{u+2} + \frac{B}{u+1}$, following their integrand		B1	
Carry o	out a correct process to find at least one constant for their integrand		M1	
Obtain	correct $\frac{2}{u+2} - \frac{1}{u+1}$		A1	
Integra	te to obtain $a \ln(u+2) + b \ln(u+1)$		M1	
Obtain	$2\ln(u+2) - \ln(u+1)$ or equivalent, follow their A and B		A1√	
Apply	appropriate limits and use at least one logarithm property correctly		M1	
Obtain	given answer $\ln \frac{8}{5}$ legitimately		A1	[1
SR for	integrand $\frac{u^2}{u(u+1)(u+2)}$			

State or imply partial fractions of form $\frac{A}{u} + \frac{B}{u+1} + \frac{C}{u+2}$ (B1)

Carry out a correct process to find at least one constant (M1) 2 1

Obtain correct
$$\frac{2}{u+2} - \frac{1}{u+1}$$
 (A1)

...complete as above.